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DISTRIBUTION FUNCTION FOR CONVECTIVE THERMALS IN THE ATMOSPHERIC
BOUNDARY LAYER
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The problem of statistical size distribution for an ensemble of thermals taking into account the
multilayer structure of turbulence in the atmospheric convective boundary layer are considered. A special
form of the size distribution function of convective thermals in the atmospheric boundary layer is derived
from similarity theory and Boltzmann statistics. The expression for the distribution density of convective
plums in the surface convective sublayer takes the form
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where r – radius of thermal; r0 – the most probably radius corresponding to this distribution; Nrdr - the
number of convective elements in a unit area whose radii are between r and r + dr; N0 - the total number
of convective elements in a unit area.

Obviously that distribution for small r has Oboukhov’s spectrum asymptotic. According to the
multilayer structure of the convective layer, this relation changes in passing from the surface sublayer to
the mixed sublayer. The results obtained are shown to agree well with known experimental data on size
distributions of convective elements.
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Laboratoire des Ecoulements Géophysiques et Industriels CNRS, France
E-mail: achim.wirth@hmg.inpg.fr

When considering the eddy dynamics in a rotating frame the rotation vector is usually assumed
to be collinear to gravity and the horizontal component of the rotation vector is neglected (traditional
approximation).

We present numerical results of the geostrophic adjustment problem and the interaction of two eddies
in which the traditional approximation is relaxed. A special interest is put on the evolution and structure of
the vertical velocity.

The numerical model used (HAROMOD) solves the three-dimensional Navier-Stokes equations
subject to the Boussinesq approximation, a free-slip boundary condition on the top and an no-slip boundary
condition at the bottom. The results are compared to integrations performed with a hydrostatic ocean model
(OPA).
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Summary

Real open shear flows are abundant in large scale vortical structures those dynamical behaviors
dominate the spatial evolutions of open flows. On the other hand, vortical structures with their dynamical
behaviors can be considered as the properties of the Navier-Stokes equation (NSE). Therefore, it is
significant to unit mathematical and experimental studies. In this study, the elementary efforts have been
paid under this way.
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Foundations of experimental studies

Study on Global Dynamics

The so-called linear and nonlinear transfer functions, denoted byLm andQm
ij , in poly-spectrum analysis

are determined trough the linear system:
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where fi + fj = fk + fl = fm. Subsequently, the energy relation:
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where SI
L(fm), SI

Q(fm) and SI
LQ(fm) are defined as linear, nonlinear and linear-nonlinear mechanisms

respectively, can be constructed based on the fundamental relation, i.e., Ym = LmXm + Qm
ijXiXj. This

relation is originated from the local stability analysis so that the poly-spectrum analysis is in the local
sense. However, the linear system (1) can be extended to two arbitrary points r0 and r in a flow field to
determine the corresponding transfer functions Lm(r; r0) and Qm

ij (r; r0) since the coefficient matrix of (1)
is Hermitian. Furthermore, as we want to mention, the relation (2) is still held on by almost frequencies,
particularly the dominant ones. The validity of the relations (1) and (2) between arbitrary r0 and r as
indicated by experiments on some classical open shear flows implies that the fundamental relation in
poly-spectrum analysis is still sustained in the global sense. In mathematics, we can found a kind
of transfer functions those corresponding fundamental relation is equivalent to the general NSE in the
temporal Fourier Space. On the other hand, the phase-angle of cross-spectrum Syx(fm) = 〈YmX

∗
m〉 is

adopted to detect the spatial phase pattern.

Study on Local Dynamics

According to the hydrodynamic stability analysis, the so-called self-bispectrum, denoted bySyyy(fm; fi, fj) =
= 〈YmY

∗
i Y

∗
j 〉, in poly spectrum analysis can be considered as the measure of the contribution due to the

nonlinearity of NSE to the rate of local spatial evolution of the frequency fm.

Experimental results

The global spatial energy relation (2) and self-bispectrum have been used to study the spatial dynamics
of axisymmetric and mirror-symmetric shear flows, variable density round jets and wake flows. Some
general properties can be concluded as follows.

1. Energy Transfer Mechanism: SI
LQ(ff ) ≈ −SI

LQ(ff/2) in pairing-merging process, where ff and
ff/2 denote the fundamental frequency with its first subharmonic, as r0 and r located in roll-up and
pairing-merging regimes respectively.

2. Energy Resonance Mechanism: SI
L(fG) + SI

Q(fG) ≈ −SI
LQ(fG) with SI

L(fG), SI
Q(fG) and

|SI
LQ(fG)| � Syy(fG), where fG denotes the global oscillation frequency, as r0 and r are both located

in the oscillation regime.

3. In any open flow, when r0 is fixed in the upstream ordered regime but r is moving downstream more
and more, the nonlinear mechanisms for almost frequencies as compared to the corresponding linear
and linear-nonlinear ones will play the dominant role finally. This process is corresponding to the ‘lost
of spatial phase relation’, i.e., the spatial phase relation between r0 and r detected through the phase
of cross-spectrum is evolved into disordered status. In the local sense, the nonlinearity of NSE plays
the important role in turbulence generation for any open flow as indicated by self-bispectrum.
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Fig 1. Comparing the energy relation of the first kind with the spatial phase pattern corresponding to a
certain large scale structure in a certain flow as indicated in Table.1: (a) S1 energy transfer from the
fundamental to its subharmonic throughSI

LQ with ordered phase pattern; (b)S2 energy resonance between
SI

L, SI
Q and SI

LQ on global oscillation frequency with disordered phase pattern; (c) S3 linearity of helical
structure that corresponds to 2-torus in phase space with quite ordered phase pattern.
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Vortical
Structures

Span of
Dynamics

Governing
Mechanisms

Phase
Patterns

Flow Fields

S1
Axisymmetric

Roll-up ⇒
Merging

Linear ⇒
Nonlinear

Ordered Axisymmetric Shear Flow

S2
Axisymmetric

Global
Oscillation

All Mechanisms Disorde-
red

Variable-Density Jet

S3 Helical 2-torus Regime Linear Ordered Axisymmetric Shear Flow
S4 Spanwise Pairing ⇒

Merging
Linear &
Nonlinear

Mirror-symmetric Shear Flow

Table 1. Comparison of global dynamics of different large-scale structures in different open shear flows. The
ordered status of phase patterns can be considered as the measure of the validity of linear hydrodynamic
stability. As indicated, helical structure that is dominated by linear mechanism corresponds to quite ordered
phase pattern, however, global self-excited oscillation of axisymmetric structure controlled by linear and
nonlinear mechanisms corresponds to disordered pattern.
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Point vortices and vortex patches are widely used to model flow regions with closed streamlines. The
two models can be connected. Point vortices can in fact be considered as vanishing area vortex regions and
vortex patches can be obtained as their accretions. The growing process generates a family of regions with
closed streamlines.

The present work is aimed at studying families of regions whose elements are patches with the same
circulation as the nascent point vortex region and which are embedded in a potential flow with closed
streamlines. Thus, the families here considered are formed by two-level piecewise constant vorticity regions.
The vorticity is ω = 0 in the outer part and ω = κ/Aω in the inner part, with κ being the circulation of the
original point vortex and Aω the area of the inner patch. The point vortex is the extremum element defined
by Aω = 0. The other extremum is the vortex patch that fills the entire region with closed streamlines.

It can be shown that the vortex patch model has physical relevance in the modelling of finite area
separated flow regions. For a proper choice of the jump of the Bernoulli constant, with respect to the
external flow, the vortex patch can be considered as the limit solutions of the Navier-Stokes equations
for the Reynolds number going to infinity. Thus, the connection between vortex patches and point vortices
has practical importance. In fact, if a standing vortex solution does not exist in a flow past a body, it could
be conjectured that the entire family of growing vortex patches does not exist and, as a consequence, a finite
area separated flow region does not exist either.

For instance, in the flow past a semicircular bump, there is a locus (the Föppl curve) of possible standing
single point vortices. In [1] it is shown that, for each standing vortex of this flow, there is a family of vortex
patches that goes from the zero area point vortex to a maximum area vortex region that is bounded by the
solid body. In [2] the Föppl curve concept has been generalized by showing that a locus of standing vortices
can be found in any bounded simply connected domain.

When the solid wall that confines the flow domain has a sharp edge, the flow has to separate at the
edge and the number of possible standing vortices reduces to a finite or null number. In [2] it is shown
that the existence, or non existence, of standing vortices relevant to flow separating at a wall singularity
depends on the nature of the singularity. The present work is aimed at showing, at least for some specific
wall geometries, that the non existence of a standing point vortex solution does not allow for the existence
of the entire family of vortex patches. This result is in contrast with numerical results available in literature
and casts some doubt on their convergence.
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ON THE STABILITY OF STRATIFIED QUASIGEOSTROPHIC CURRENTS WITH VERTICAL
SHEAR
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The law of conservation of potential vortex in a stratified ocean on the β-plane can be written in the
geostrophic approximation in the following form

J
(
P,∆P + (P ′

z/B
2N2(z))′z + by

)
= 0, (1)

where J(a, b) = a′xb
′
y − a′yb

′
x is the Jacobian of two functions, P (x, y, z) is the pressure, ∆ = ∂2/∂x2 +

+ ∂2/∂y2, B = H0N̄/fL is the Burger number, N(z) is Brunt- Väisälä frequency, b = βL2/U0, H0 is the
ocean depth, f is the Coriolis parameter, L is the horizontal linear size of the underwater elevation (of the
order of a hundred of kilometers), β = df/dy is beta-effect, U0 is the characteristic value of the background
flow.

We used the Kozlov-Monin-Neiman-Filyushkin hyperbolic law for N(z) (KMNF-approximation)

N(z) =
N0

1 + γz
. (2)

With the effect of wind and the friction at the bed neglected, the boundary conditions will take the form:

on the surface of the ocean z = 0 : J(P, P ′
z) = 0, (3)

on the bottom z = 1 : J(P, P ′
z −B2N2(1)σh(x, y)) = 0, (4)

where σ = h0f0L/H0U ≈ O(1) is a topographic parameter, h(x, y) is a dimensionless perturbation of the
bottom. The coordinate axes are directed: x eastward, y northward, z vertically downward. The origin is
located on the undisturbed surface of the ocean.

Let us represent pressure P (x, y, z) as the background value P∞(y, z), which is determined by the
structure of the flow meeting the seamount, and pressure perturbation σΨ(x, y, z) due to bed topography:

P (x, y, z) = P∞(y, z) + σΨ(x, y, z). (5)

Let us specify P∞(y, z) in the form P∞ = −Uy.
The main equation for pressure perturbation is

∆Ψ +

[
Ψ′

z

B2N2(z)

]′

z

+ λ(z)Ψ = 0, (6)

where function λ(z) has the form
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and in the general form describes the joint effect of the Earth’s sphericity (β-effect), water baroclinicity, and
flow velocity shift. The boundary conditions will have the form:

at z = 0 : ∂Ψ
∂z

− U ′
z(0)

U(0)
Ψ = 0; (8)

at z = 1 : 1

B2N2(1)

[
∂Ψ
∂z

− U ′
z(1)

U(1)
Ψ

]
+ h(x, y) = 0. (9)

The stability of some flows was proved. For this purpose we used Arnold’s theory.

Theorem 1. Stratified flow with KMNF-approximation of Brunt-Väisälä frequency N(z) will be stable
if

min
z

[
1

λ(z)

]
>

4B2N2
0

γ2

[
4π2

ln2(1 + γ)
+ 1

]−1

. (10)

Theorem 2. Stratified flow with N(z) = N0 = const will be stable if

min
z

[
1

λ(z)

]
>
B2N2

0

π2
. (11)
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