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HYPER-CHAOS IN PIEZOCERAMIC SYSTEMS WITH LIMITED POWER-SUPPLY
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Functioning of many important and mission-critical devices of various engineering machines, including
transformers, is based on the effect of coupling of mechanical and electrical fields in piezoceramic mediums.
Hence, creation of a general mathematical theory of electroelastic processes in such mediums under
arbitrary conditions of mechanical and electrical loading is important, both in scientific and applied
aspects. Althogh such theory for many piezoceramic devices and constructions is created (see, for example,
Ulitko A. F.’s works [1] ) a problem of behaviour of electroelastic fields is considered only for conditions
of forced and free oscillations, when the piezoelectric ceramics is under activity of applied mechanical and
electrical fields of a priori given values. Thus a problem of influence of dissipation and radiation of energy
under oscillations of coupled fields of the device remains outside of many considerations.

The present paper is devoted to the analysis of interaction effects, collectively called the effect of
Sommerfeld-Kononenko, in oscillations of piezoceramic transducer and in the mechanism of its excitation
- the generator of the electric current of limited power-supply [2, 3]. The new mathematical model of
interaction of the generator and the piezoceramic transducer submerged in a hydromedium with resistance
is constructed. The coupling of processes in the transformer and the energy source (the generator) leads
to such qualitatively new effects in their dynamics as cannot be seen using a model of the problem with
unlimited or so-called “ideal” excitation.

In the present work the principal attention was given to examination of origin and development of
the deterministic chaos in dynamic systems with limited excitation such as "the piezoceramic transducer
- the generator ". The methodic worked up and the large cycle of computer experiments on study
of the regular and chaotic regimes interaction systems is carried out. Dependences of spectrums of
Lyapunov characteristic exponents on parameters of a system are obtained. The possibility of origin of
the deterministic chaos is proved. It is shown, that in a system there are some types of chaotic attractors.
Including two types of hyper-chaotic attractors detected.

Phase portraits, sections and Poincaré maps, distribution of invariant measures and spectral densities
of attractors of the system are constructed and in details investigated. Some scenarios of transition from
the regular regimes to chaotic ones such as, Feigenbaum’s cascade and an intermittency of the first type
on Pomeau-Manneville are revealed. It is established, that a principal reason of origin of the determined
chaos in the system is interaction between subsystems, the transducer and the generator, instead of their
individual properties.

In Fig. 1 the regular and hyper-chaotic attractors for the same physics parameters for the cases of an
absence and presence of the feed back connection between the subsystems are exhibited.

a b

Fig 1. Projection of the phase portrait of the regular(a) and the hyper-chaotic (b) attractor.
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THE UNIFIED THEORY OF THE LINEAR SHALLOW WATER EQUATION ON THE ROTATING
PLANE
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The linearized system of Shallow Water Equations (LSWE) on a tangent (x, y) plane to the rotating
Earth with Coriolis parameter f(y) that depends arbitrarily on the northward coordinate y is considered
as a spectral problem of a self-adjoint operator. Despite of its non-constant coefficients the LSWE system
can be reduced to a single linear second order equation in x and y. This equation generates easily all the
known exact and approximate solutions that arise from different boundary conditions, vanishing of some
small terms and specific form of the Coriolis parameter f(y). In particulary in certain limiting cases these
solutions reduce to the well-known plane waves of geophysical fluid dynamics: Inertia-gravity (Poincare)
waves, Planetary (Rossby) waves and gravity (Kelvin) waves as well as to the steady geostrophic flow. The
above approach to the LSWE system applies straightforwardly to the equatorial beta-plane and to the mid-
latitude f- and β-planes.

MOTION OF N + 1 VORTICES IN A TWO-LAYER ROTATING FLUID
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2Laboratoire des Ecoulements Géophysiques et Industriels CNRS, France

E-mail: sokol@aqua.laser.ru

Characteristics of motion were studied for N + 1 point vortices withA symmetry planes immersed into
a two-layer fluid. The central vortex of intensity µκ is supposed to belong to the upper layer, and an N-
gonal configuration of vortices with equal intensity κ - to the bottom one. Theoretically possible stationary
movements at N > 2 were analyzed. There is shown:

• as µ > −0.5, the angular velocity ω and κ have the same sign (the N-gon rotates in the direction
which is determined by the intralayer interaction of its vortices), and |ω| is a monotonously decreasing
function of a circumscribed circle radius R (we call such vortex structure an inverse roundabout);

• as µ < −0.5, the function ω becomes non-monotonous; it both changes its sign at some value of
R = R0 (in this case the rotation of the N-gon in the lower layer is determined by the upper-layer
vortex, and the configuration as a whole becomes an ordinary roundabout), and takes its minimum
value at R = Rmin;

• R0(µ, N) and Rmin(µ, N) are decreasing functions with respect to µ and increasing ones with
respect to N .

In a particular caseN = 2, a detailed investigation of possible motion of three vortices was performed; in
the initial moment these vortices had more general arrangement (not obviously symmetrical and collinear):
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• Use of trilinear coordinates [1] gave the possibility to study qualitatively the relative vortex motion in
a large interval of external parameters. There is given a classification of possible motion types, based
on the separation of areas with predominant intra- and interlayer interaction of the vortex structure.

• The analysis of stationary states corresponding to singular points of phase portraits was carried
out. Dispersion equations were derived for these states, which link the geometrical characteristics
of vortex structures with external parameters of the problem.

• There were found new types of stationary solutions: (1) a stable one eccentric roundabout - a rigid
body rotation (around an immovable vorticity center) of a collinear asymmetric triple vortices, and
its particular case - triton, having zero total intensity, which moves translationally with a constant
velocity; (2) stable and unstable structures in the form of isosceles triangle; (3) stable and unstable
symmetric roundabout [see, 1 for example, figure where N = 2, µ = −1 and R = 0.815 - (a),
R = 0.875 - (b), R = 1.2 - (c)].

• We found classes of relative and absolute choreographies [2], which correspond to purely periodic
relative three-vortex movements.

Fig 1
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The purpose of this paper is to investigate how inertia-gravity waves, i.e. internal gravity waves in a
rotating medium, may interact with a horizontal flow with both a horizontal and a vertical shear. Such
interactions occur everywhere in geophysical flows as soon as inertia-gravity waves propagate in a wind or
a current, or encounter a vortical motion such as a large scale vortex. The case of a barotropic shear flow has
been addressed by several authors ([5], [3],[1],[6]) and we consider here the case of a baroclinic shear flow.
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This problem has been addressed in its full generality within the WKB approximation, without rotation, by
[2]. A simple model of wave and baroclinic flow, described in the next section, is introduced in the present
paper. We rely on WKB theory and also perform direct numerical simulations of the three-dimensional
nonlinear Boussinesq equations. The geophysical motivation of this work is to investigate whether some
irreversible wave-induced momentum transport may occur across the shear flow. In the present paper, we
explore the wave behavior as it propagates in the shear flow.
Let (x, y, z), with z directed upwards, be a Cartesian coordinate system in the rotating reference frame
attached to the fluid container. The baroclinic shear flow consists of a velocity field along the x-direction
U(y, z) in thermal wind balance with a buoyancy field B(y, z). The baroclinic current is a horizontal shear

layer, centered about y = ys, with a vertical shear:U(y, z)/U0 =

[
1 + tanh

(
y − ys

Ls

)][
1 + β sin

(
2πz
Hs

)]
−

− 1. The velocity scale is U0 and the parameter β represents the strength of the baroclinicity: the shear
flow is barotropic if β = 0 or β � 1 . This initial condition implies that an inertia-gravity wave packet
propagating from a region where y � ys travels, as y increases, from a uniformly translating medium along
the x direction with speed −U0, to a moving medium with both a vertical and a horizontal velocity shear.
Let k and Ω(k) refer to the main wave vector and intrinsic frequency respectively of such a wave packet.
We recall that f 6 Ω(k) 6 N , where f and N are the Coriolis and local buoyancy frequency. A initial time
t = 0, we assume that the wave induced energy is confined within a two-dimensional Gaussian envelope
along the y and z directions.

We solve the classical ray equations, which describe how a wave vector is refracted by the gradients
of the background flow along a ray. From a practical point of view, the ray equations are initialized by a
set of rays starting from points that model the wave packet and the wave amplitude is computed from the
conservation of wave action.

We solve the Navier-Stokes in the Boussinesq approximation in a parallelepipedic domain. The
boundary conditions are periodic along the x and z directions and of free slip type along the y direction,
so that a pseudo-spectral method can be used. The equations are integrated in time using a third-order
Adams-Bashforth scheme.

We have performed several computations, which are described in [4]. The point of view we have chosen
is the following: the wave packet propagates into the current such that its intrinsic frequency increases (by
Doppler effect) because of the y-dependency of the shear flow. This means that the wave packet should be
trapped in the neighbourhood of the Ω = N surface and possibly break there, at least when β = 0 [5],
[6], thereby inducing mean flow changes. Our purpose in this paper is to investigate the influence of the
baroclinicity parameter β on this behavior for 0 < β 6 1.

We illustrate the wave-shear flow interaction for a background flow with a weak horizontal shear, with
Rossby number (close to 0.3) comparable to that of the wave packet and for β = 0.5. The ratio N0/f = 4.4
(whereN0 = 1 is the buoyancy frequency of the fluid at rest), the initial Reynolds number of the wave packet
and of the background flow are large (of order 104) and the Prandtl number is equal to 1.

Ray trajectories predicted from WKB theory are displayed in Fig. 1a. Because the intrinsic frequency
Ω increases during propagation, the rays steepen in the neighbourhood of the Ω = N surface and are
trapped there. They next travel downwards with the vertical group velocity. The shear flow we have designed
possesses regions where ∂U/∂z vanishes (∂U/∂y being minimum there) so that the Ω = N surface flattens
about this region. This is where the rays, which have become quasi-vertical because Ω is close toN , reflect.
Fig. 1a shows that the rays are able to propagate further in the shear flow, within a wave guide limited by
two portions of the Ω = N surface. Results from DNS for the same run are plotted in Fig. 1b to 1d. The
same qualitative behavior as in the WKB theory is observed: the wave packet, guided and steepened by
the trapping process (Fig. 1c), meets again the Ω = N surface when it flattens (Fig. 1d). No reflection is
observed however: the decay of the wavelength along the y-direction and of the group velocity makes the
packet very sensitive to viscous effects. It has totally dissipated by the time the rays first reflect (t ' 300),
assuming the ray predictions remain quantitatively reliable.

In summary, when a wave packet propagates in a baroclinic shear flow such that its intrinsic frequency
increases due to the horizontal shear, DNS of the Boussinesq equations show that the packet is trapped
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Fig 1. (a) Predictions from WKB theory; trajectories of rays starting from points modelling the initial wave
packet at t = 800. The grey region along the rays indicates where strong amplification occurs. (b) to (d):
Results from DNS. Constant contours of the fluctuating density field, at t = 0 (b), 56 (c), 176 (d) In all
frames, the surface Ω = N is displayed with a black line.

and dissipates in the vicinity of the Ω = N surface. When the shear flow locally vanishes (not shown),
both WKB theory and DNS results predict that the wave can penetrate into the shear flow through a wave
guide. If the wave packet were forced, it could possibly break and thereby induce an irreversible momentum
transport across that flow.
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MAGNETIC FIELD GENERATION IN FULLY DEVELOPED TURBULENT FLOW
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We investigate the dynamo problem in the limit of small magnetic Prandtl number (Pm) using a shell
model of magnetohydrodynamic turbulence. The model is designed to satisfy conservation laws of total
energy, cross helicity and magnetic helicity in the limit of inviscid fluid and null magnetic diffusivity. The
forcing is chosen to have a constant injection rate of energy and no injection of kinetic helicity nor cross
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helicity. We find that the value of the critical magnetic Reynolds number (Rm) saturates in the limit of
small Pm. Above the dynamo threshold we study the saturated regime versus Rm and Pm. In the case of
equipartition, we find Kolmogorov spectra for both kinetic and magnetic energy except for wave numbers
just below the resistive scale. Finally the ratio of both dissipation scales (viscous to resistive) evolves as
Pm−3/4 for Pm < 1.

ON AN INTEGRABLE SYSTEM AND SPECTRAL PROPERTIES OF SOME CLASS
OF DISCRETE STOURM–LIOUVILLE OPERATORS

SERGEY P. SUETIN

V. A. Steklov Mathematical Institute, Russian Academy of Sciences, Russia
E-mail: suetin@mi.ras.ru

1. It is well-known [1, 2, 3] that there is very close connection between the properties of discrete
Stourm–Liouville operators and orthogonal polynomials. E.M.Nikishin [2] was the first who applied the
methods from the theory of orthogonal polynomials and Pade approximations to the theory of discrete
Stourm–Liouville operator. But in [2] he considered the classical case where ess suppσ = [a, b] is a segment
on real line R. Here we consider the case when there are some lacunae in ess suppσ.

2. Let σ be a probability borelean measure, suppσ b R. Consider the Chebyshev expansion the function

of type σ̂(λ) :=
∫ dσ(x)

λ− x
, λ ∈ C \ suppσ, into continued fraction σ̂(λ) ∼ 1

λ− b1−
a2

1

λ− b2−
a2

2

λ− b3−
. . . .

Then all the bn, an 6= 0 are real. The n-th convergent pn/qn to the Chebyshev fraction has the following
property qn(λ)σ̂(λ) − pn(λ) = rn(λ) where qn are unequaly determined by the conditions qn(λ) = knλ

n +
+ · · · , kn > 0 and

∫
qn(x)qm(x) dσ(x) = δnm. The function rn(λ) is the so-called second kind function.

Let suppose that p−1(λ) ≡ 1, p0(λ) ≡ 0; q−1(λ) ≡ 0, q0(λ) ≡ 1; r−1(λ) ≡ −1, r0(λ) = σ̂(λ), then the
sequences of the three functions will satisfy to the three-term recurrence

anyn(λ) = (λ− bn)yn−1(λ) − an−1yn−2(λ), n = 1, 2, . . . , a0 = 1. (1)

3. Let {ej} be standart basis in `2(N). Define [2] a discrete Stourm–Liouville operator J : `2(N) →
`2(N) by the equalities

Je1 = a1e2 + b1e1, (2)

Jen = anen+1 + bnen + an−1en−1, n = 2, 3, . . . ;

then σ is the spectral measure and suppσ is the spectrum of J .
When ess suppσ = [−1, 1] the sequance {wn(z)}n∈

�
0

, N0 = N ∪ {0}, w0(z) ≡ 1, wn(z) =
〈
en, (λ −

− J)−1e1
〉

, n = 1, 2, . . . , |z| < 1, λ = (z + 1/z)/2 /∈ suppσ, is called [4] the Weyl solution of 1. By the
spectral theorem we obtain wn(z) = rn−1(λ), λ /∈ suppσ.

4. Now we shall set S :=
⊔g

j=1 ∆j, ∆j = [e2j−1, e2j ], j = 1, 2, . . . , g+1, polynomial h(λ) =
∏2g+2

j=1 (λ−
− ej). We suppose that measure σ has the following form dσ(x) = ρ(x)dx/

√
−h(x+ i0) +

∑m
k=1 ρkδ(x−

− ak), where ρ 6= 0 is holomorphic on S, the square root follows the condition
√
h(z)/zg+1 → 1, z → ∞,

z ∈ D := C \ S, all ρk > 0, ak ∈ R \ Ŝ, where Ŝ is the convex hull of S.
Our main result is the following

Theorem 1 Under the above condition on σ the following formulae holds

qn(λ)rn(λ) =

∏g
j=1(λ− λj(n))
√
h(λ)

+ o(δn), λ ∈ Ĉ \ suppσ, n→ ∞, δ ∈ (0, 1),

where values λ1(n), . . . , λg(n) come from the solutiion λ1(t), . . . , λg(t) of an integrable system of g
equations when t = n ∈ N; all values λj(t) ∈ [e2j , e2j+1] when t ≥ 0.

The proof of the above thorem is bases on the special, see [5, 6], method to investigate asymptotic
properties of the polynomial orthogonal on several segments.
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INERTIAL PULSATIONS OF LENS-LIKE STRATIFIED ANTICYCLONIC VORTICES

GEORGI G. SUTYRIN

Graduate School of Oceanography, University of Rhode Island, USA
E-mail: gsutyrin@gso.uri.edu

Hydrostatic, stratified Boussinesq primitive equations (PE) are widely used for modeling large- and
mesoscale variability in planetary atmospheres and oceans. However, exact nonstationary solutions for the
PE are limited. Some analytic solutions were found for finite-area lens-like vortices in the reduced-gravity
shallow water formulation (see Rubino et al. [1] and references therein). One family of so-called rodon and
pulson solutions is described by a set of ordinary differential equations when velocities are assumed to be
linear functions of the horizontal coordinates, so that both horizontal divergence and vorticity are spatially
uniform within the vortex area. This class of exact solutions describes rotation and pulsations of elliptical
anticyclonic eddies with maximum velocity at the vortex boundary.

Circular vortices with more realistic horizontal and vertical structure are also able to support nonlinear
pulsations with inertial frequency as described analytically for the shallow water model by Rubino et al. [1].
In this second family of analytical nonstationary solutions the divergence of velocity oscillates in time being
spatially uniform within the vortex boundaries while the vorticity may depend on time and coordinates. The
second family of reduced-gravity analytical pulson solutions has a self-similar nature and can be extended
to rather arbitrary radial and vertical vortex structure in continuously stratified PE [3]. In the self-similar
form the pulson solution describes radial expansion and contraction of the vortex which maintains the same
spatial structure in Lagrangian coordinates.

We consider an axisymmetric stratified flow with horizontal velocity v = (u, v) in cylindrical coordinates
(r, θ, η), where η = (ρ − ρ0)/ρ0, assuming density, ρ, increases monotonically downward from a reference
value ρ0. The hydrostatic balance in such isopycnal coordinate system can be written as ∂φ/∂η = gz, φ ≡
p/ρ0+gzη. Here φ is the Montgomery potential, p is the pressure, g is the gravity acceleration, and z(t, r, η)
represents the depth of isopycnal surfaces.

Inviscid flows with density conserved by individual fluid parcels conserve also the absolute angular
momentum m ≡ vr + fr2/2 (f is the Coriolis parameter). We assume that the flow is located inside
the area which may depend on time, t, and seek the solution for the angular momentum in the form m =
= M(R, η), R = r/

√
S, where S(t) is the area expansion coefficient. In this case, radial velocity depends

linearly on the radial distance, r

u = −∂m
∂t

(
∂m

∂r

)−1

=
Ṡr

2S
, (1)
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so that it satisfies the condition of zero horizontal velocity at the vortex center r = 0. Note, that this radial
velocity does not depend on η and the horizontal divergence is spatially uniform: ∇ · v = Ṡ/S. Therefore,
such vortex dynamics is described by the shallow water model for each η

∂φ

∂t
+
∂φu

∂r
+
φu

r
= 0, (2)

where the solutions for φ and z have the same form

φ =
1

S
Φ(R, η), z =

1

Sg

∂Φ

∂η
. (3)

The relation between M and Φ is obtained from the radial momentum balance

M2

R4
− 1

R

∂Φ

∂R
=

1

4
(f2S2 − Ṡ2 + 2SS̈) ≡ f2

4
(1 − a2), (4)

where the RHS remains constant if S = 1 + a sin(ft), where 0 < a < 1 in order to satisfy the
physically realistic demand that S > 0 (for a = 0 Eq. (4) described gradient wind balance in a stationary
vortex). Inertial oscillations in this set of nonlinear nonstationary solutions depend on a, while the spatial
distribution φ(R, η) in coordinates (R, η) is the same as for the stationary solution except its amplitude
pulsates inversely proportional to S according to Eq. (3) in order to provide the mass conservation described
by Eq. (2). Therefore, it has physical meaning only for finite area vortices Φ = 0 forR > R0; the actual vortex
radius pulsates with time as r0 = R0

√
1 + a sin(ft). Correspondingly, the isopycnal surfaces become

deeper or shallower following pulsations in r0. Such solution can describe anticyclonic (warm-core) lens-
like vortex with all isopycnals outcroping at the same level z(R0, η) = 0 at variable radial distance r0.

Note that the vertical velosity w = −Ṡz/S increases from zero at the reference level to maximum at
the lowest isopycnal while Φ decreases from maximum at the reference level to zero at the lowest isopycnal
overlying deep motionless fluid as often assumed in the reduced-gravity approximation. Correspondingly,
azimuthal velocity calculated from (4) for a > 0 deviates from stationary gradient balance to compensate
impact of pulsating radial velocity. Thus, such unbalanced solution has nonzero agradient velocity (cf.
Sutyrin [2]) and remains unbalanced because inertia-gravity waves are trapped inside the edge of such
lens-like vortex: they are not able to propagate through outcroping isopycnals.

These self-similar solutions demonstrate that during the inertial period the structure of axisymmetric
pulsons remains essentially the same in properly normalized isopycnal coordinates. The simple analytic
expression for nonstationary PE solutions is found for fairly arbitrary horizontal and vertical vortex structure
starting from a stationary lens-like anticyclone and depending on the amplitude, a, of the vortex area
pulsations. These exact solutions can be used for assessing laboratory and numerical models with layer
outcroping.
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Intense baroclinic vortices are abundant in the ocean and their evolution without any background
current has been the subject of many investigations (see the recent review by Carton [1], and references
therein). On the spherical earth for instance, it is well known that oceanic vortices are strongly influenced
by a barotropic potential vorticity (PV) gradient called planetary β-effect. The effects of a background
current on the propagation of vortices depend on the current structure. Under the influence of a constant
barotropic current, vortices are merely advected at the current velocity. The advection speed associated with
a vertically sheared background current has been considered by Hogg and Stommel [2] or Marshall and
Parthasarathy [4]. Besides this direct advective effect on the vortex, a vertically sheared current is generally
associated with a baroclinic PV gradient that results in the modification of the β-gyres and induces an
additional vortex displacement. Kaz’min and Sutyrin [3] and Vandermeirsch et al. [9] have shown that this
effect, refered to as a "baroclinic β-effect" because of its similarity with the planetary β-effect, is important
and could drastically modify the vortex trajectory.

Large-scale oceanic currents have both vertical and horizontal shear. Uniform horizontal shear is
known to produce elliptical deformation of the vortex core (e.g., Sutyrin et al. [8]) while non-uniform shear
may result in higher azimuthal mode deformation (Sutyrin and Carton [5]). The present study focuses on
the net influence of a horizontally and vertically sheared flow, typical for a large-scale Rossby wave, on the
evolution of propagation of intense vortices, taking both advection and baroclinic β-effect into account. By
simplifying the flow and vortex structure in a one-and-a-half layer, the present study is only a first step in
elucidating the influence of sheared flows on coherent vortices in the ocean.

We develop an analytical theory for the motion of an intense vortex in the presence of a sheared flow
on the f-plane and the beta-plane. We derive asymptotic expansions and compare them with numerical
simulations in the framework of the reduced-gravity quasi-geostrophic model. The analytical method
suggested for intense vortices with piecewise-constant potential vorticity (Sutyrin and Flierl [6]; Sutyrin
and Morel [7]) is generalized to take into account a large-scale sheared flow with nonuniform background
potential vorticity.

The theory describes the vortex advection by the flow and the vortex drift due to the background potential
vorticity gradient. The net advective effect of the flow on the vortex is found to be much less than the
maximum of the flow velocity due to the baroclinic beta-effect and the horizontal shear. Besides known
elliptical core deformations, triangular deformations are generated described by the third azimuthal mode
at the core boundary. Additionally on the beta-plane, the planetary beta-effect provides predominantly
westward vortex drift.

The asymptotic theory is shown to agree well the results of a numerical pseudo-spectral, high-
resolution biperiodic model when the vortex velocity is much larger than the maximm velocity of the flow
represented by a zonal Rossby wave. Both meridional and zonal vortex drifts are slightly overestimated
when the flow velocity is comparable with the vortex velocity. Vortex size is shown to be more influential
on vortex trajectory than the Rossby wave length. In particular, smaller vortices drift westward farther and
faster than large ones. Vortex core deformations contain the typical modes 2 and 3 in general; stronger mode
3 component for less intense vortex as predicted by the theory.
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EQUATIONS IN THE PARAMETRICAL FORM
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The algorithm is formulated in the conditional form in the supposition, that all functions exist and have
those a smoothness, which is required that the algorithm could be applied. Let’s consider the quasilinear
parabolic equation with a small parameter ε

Let’s assume, that connection of solutions (it is non standard change of variables) of the equation (1)
with equation (9)

It is possible to select as
εZt − ε2(K(Z, ε)Zx)x + F (Z, ε) = 0, (1)

Z(x, t, ε)|x=x(ξ,δ),t=t(ξ,δ) = U(ξ, δ, ε) (2)

for want of it the function Z(x, t, ε) is a solution (1). Let’s assume that the determinant (Jacobian) detJ
of this change of variables is different from zero in some area in R. Let’s assume, at least locally, there is a
reconversion ξ = ξ(x, t, ε), δ = δ(x, t, ε). Examples show, that there are cases when these suppositions
are correct.

Let’s assume, that the ratio for streams

K(Z(x, t, ε), ε)∂Z
∂x

|x=x(ξ,δ,ε),t=t(ξ,δ,ε) = Y (ξ, δ, ε), K(Z(x, t, ε), ε)∂Z
∂t

|x=x(ξ,δ,ε),t=t(ξ,δ,ε) = T (ξ, δ, ε)

(3)
We are calculating derivatives in right members (3) we shall receive of equalities

K(U(ξ, δ, ε), ε)

detJ

(
∂U
∂ξ

∂t
∂δ

− ∂U
∂δ

∂t
∂ξ

)
= Y (ξ, δ, ε),

K(U(ξ, δ, ε), ε)

detJ

(
−∂U
∂ξ

∂x
∂δ

+ ∂U
∂δ

∂x
∂ξ

)
= T (ξ, δ, ε)

(4)
Let’s multiply the equation (1) on K(Z, ε). After substitutions (3) in the equation (1) with allowance for (2)
we shall receive the equation

εT (ξ, δ, ε) − ε2K(U, ε)

detJ

(
∂Y
∂ξ

∂t
∂δ

− ∂Y
∂δ

∂t
∂ξ

)
+K(U, ε)F (U, ε) = 0. (5)
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By virtue of a smoothness of functionZ(x, t, ε). The equality Zxt = Ztx can be noted as

− ∂
∂ξ

[
Y

K(U, ε)

]
∂x
∂δ

+ ∂
∂δ

[
Y

K(U, ε)

]
∂x
∂ξ

− ∂
∂ξ

[
T

K(U, ε)

]
∂t
∂δ

+ ∂
∂δ

[
T

K(U, ε)

]
∂t
∂ξ

= 0. (6)

Theorem 2 The system of the nonlinear algebraic equations (3)- (6) rather variables has a unique solution:

∂x
∂ξ

= K
Y P (δ, ξ, ε)

[
−Q1Q2TUξ +Q1FKTU

2
ξ +Q1T

2U2
ξ +Q2

2TUδ −Q2FKTUδUξ −Q2T
2UδUξ−

− Q1TξUξY
2 +Q2TδUξY

2
]
,

(7)

∂x
∂δ

= ∂K
Y P (δ, ξ, ε)

[
−Q2

1TUξ +Q1Q2TUδ +Q1FKTUδUξ +Q1T
2UδUξ −Q2FKTU

2
δ −

− Q2T
2U2

δ −Q1TξY
2Uδ +Q2TδY

2Uδ

]
,

∂t
∂ξ

=
Q2K[Q1Uξ −Q2Uδ]Uξ

P (δ, ξ, ε)
, ∂t

∂δ
=
Q1K[Q1Uξ −Q2Uδ]

P (δ, ξ, ε)
,

P (δ, ξ, ε) = Q1FKTUξ +Q1T
2Uξ −Q2FKTUδ −Q2T

2Uδ −Q1TξY
2 +Q2TδY

2, (8)

where

Q1 = F (U)K(U)Uδ + εTUδ − ε2Y Yδ, Q2 = F (U)K(U)Uε + εTUξ − ε2Y Yξ.

Theorem 3 The necessary condition of a resolvability of the redefined system (7), (8) is equality of the
mixed derivatives xξδ = xδξ , tξδ = tδξ. These two conditions coincide for want of any smooth functions
U(ξ, δ, ε), T (ξ, δ, ε), F (U, ε), K(U, ε) and are by partial equation of the second order concerning function
U(ξ, δ)

LU = ∂
∂δ

(
Q2K(U, ε)(Q1Uξ −Q2Uδ)Uξ

P (δ, ξ, ε)

)
− ∂
∂ξ

(
Q1K(U, ε)(Q1Uξ −Q2Uδ)Uξ

P (δ, ξ, ε)

)
= 0. (9)

Thus, there is a new method of construction of solutions of the equation (1) in the parametrical form with
two parameters on the following algorithm.

a) We set a concrete form of functions F (U, ε), K(U, ε), T, Y in the equation (1).

b) We calculate coefficients of the equation (9).

с) We discover one from solutions homogeneous equation (9) with distinct from zero by a Jacobian.

d) We calculate derivatives under the formulas (7) - (8).

Further, we calculate functions x = x(ξ, δ), t = t(ξ, δ). The method is distributed to the quasilinear
hyperbolic equations.


