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The steady-state two-phase flow is simulated by a non-linear elliptic system of equations [3]
that is a vector analogue of the non-linear thermal conductivity equation when the conductivity
coefficient depends on "temperature". The classical homogenization procedure for non-linear
equations ( [2], [4]) gives the homogenized equation in the case when the only small parameter of
the problem is equal to the ratio ε of the period of the microstructure to the characteristic size of the
problem. This homogenized equation is of the same type as the initial one, i.e. if the steady-state
flow equation for phase pressures piε takes the form

div(λi(
x
ε , p1ε − p2ε)∇piε) = fi(x), i = 1, 2, x ∈ r

s, s = 2, 3, (1)

with 1-periodic in ξ coefficient λi(ξ, Pc) and with fi smooth enough, then the homogenized
equation is div(λ̂0i(p10 − p20)∇pi0) = fi(x), i = 1, 2, where pi0(i = 1, 2) are the macroscopic
pressures and λ̂i are the macroscopic effective phase permeabilities calculated according to the
standard [2] homogenization procedure.

Thus the macroscopic effective phase permeabilities depend on the difference of phase
pressures but not on the gradients of these pressures. On the other hand some numerical
experiments [5] show that λ̂i0 depend on these gradients, and the contribution of this
dependency is of order of 1.

The present paper explains this effect in the case when the model contains a second small
parameter : the ratio of microscopic effective permeabilities of some low-permeable for one of
phases zone occupying the domain G2 and of the high-permeable for the same phase zone
occupying G1. It means that the material occupying G1 is much more permeable than G2 for one
of phases while for the second phase their permeabilities are comparable.

This situation is realistic. For example, in some capillary pressure intervals the non-wetting
phase can have permeability constrast of several orders of magnitude whereas for the wetting
phase the permeability is of the same order in both high-permeable and the low-permeable
zones. The discovered new effect was described in [6]; it may be important for the oil recovering
engineering.
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In this paper we address the study of the evolution of vortex torus knots and the influence
of the winding number on the self-induced velocity in ideal fluid. This problem dates back to
the original work of Lord Kelvin [1] on vortex atoms and it still presents challenging difficulties.
A former study [2], based on the analytical solutions of steady torus knots under the localized
induction approximation and the numer- ical evolution of these knots under the Biot-Savart law,
has revealed unexpected stability features and strong coherency of these knot configurations,
motivating further work. Here we consider the evolution of thin core vortex filaments in the shape
of torus knots in the context of the Euler equations. Torus knots are twist knots embedded on a
torus and are classified by their topological winding number, given by the ratio of the number of
meridian to longitudinal turns. Since they may be specified by a relatively simple geometry, some
analytical progress is possible. In the simple case of uniform core vorticity, we show that the Biot-
Savart law can be reduced to a line integral, function only of the topology of the knot type, through
the winding number, and the toroidal geometry. Since in ideal conditions the knot dynamics is
completely controlled by the Biot-Savart law, we can analyze the effects of the winding number on
the self-induced velocity. This study is carried out by applying the de-singularization prescription
of Moore-Saffman [3] and we present some preliminary results. This study provides also important
information as regards the generic role of twist in relation to the the long-term behaviour of helical
structures and the kinetic helicity of complex vortex flows [4].
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The use of the Schwarz function to investigate the dynamics [1] and the stationary shapes
[2, 3] of uniform vortices is a rather old and powerful approach [4]. Along the same way, a general
approach to find the boundary (∂P ) of a uniform vortex which rotates without changing its shape
at constant angular velocity Ω is here proposed.

In a previous paper, the tangent derivative of the conjugate of the complex velocity on the
patch boundary has been investigated [5]. It has been shown that such a derivative is related to the
tangent derivative of the Schwarz function Φ(x) = x of the curve ∂P . Starting from the above
mentioned paper, the conjugate of the complex velocity on the patch boundary follows, through an
integration by parts, as:

u(x) = − i
2

[
1

2πi

∫
−

∂P

dy
Φ(y)

x − y
+ 1

2
Φ(x)

]
. (1)

As a sample case, consider an elliptical vortex, with semi-axes a along x and b (< a) along y.
The focal distance 2c = 2

√
a2 − b2 and the quantities α = (a2 + b2)/c2, β = 2ab/c2 will be also

used. The Schwarz function of the boundary of the elliptical patch is given by:

Φ(x) = αx − β
√

x2 − c2 . (2)

By inserting the function (2) into the equation (1), the conjugate of the velocity along the boundary
follows:

u(x) =
iβ
2

(√
x2 − c2 − x

)
.

The elliptical vortex is a stationary solution of the Euler equations, as stated by Kirchhoff [6]. The
angular velocity Ω follows from the eigenvalue problem:

Re

{
τ

[
1

2πi

∫
−

∂P

dy
Φ(y)

x − y
+ Φ

2

] }
≡ 2Ω Re(τΦ) , (3)

in which τ is a vector tangent to the boundary ∂P and Re(x) is the real part of the complex number
x. By inserting the Schwarz function (2) into the condition (3), one obtains the well known result
Ω = ab/(a + b)2.

In the present paper, the analysis is carried out for given forms of Φ, having a suitable set of
free parameters. In particular, the class of the Schwarz functions:

Φ(z) =

n∑

i=1

ai

z − zi
, (4)

z being a point on the unit circle and n a small positive integer, will be considered. The
constraints on both residuals ai and poles zi of the function (4) for a stationary, uniform vortex
are investigated.
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Let an inviscid incompressible fluid occupy a domain in the plane (x,y) bounded by the free
surface −∞ < y 6 η(x, t), −∞ < x < ∞, t > 0. Assuming that the fluid flow is potential, we
have v(x, y, t) = ∇Φ(x, y, t), where v(x, y, t) is a two-dimensional velocity field and Φ(x, y, t) is a
potential.

The incompressibility condition div v = 0 implies that the velocity potential obeys the Poisson
equation

∆Φ(x, y, t) = 0. (1)

Equation (1) is supplemented with the boundary and initial conditions

(ηt + Φxηx − Φy)|y=η(x,t) = 0,

(Φt + 1
2
|∇Φ|2 + gy)|y=η(x,t) = 0,

Φy|y=−∞ = 0,

where g is the acceleration of gravity.
We consider equivalent equations, called the Dyachenko’s equations, describing nonstationary

motion of ideal liquid with free boundary in a gravitational field. Dyachenko’s equations are
nonlinear integro-differential equations. They turn out to be convenient for numerical modeling.

Existence of analytic solutions of the above equations for a sufficiently small time interval is
proved. Solutions from Sobolev spaces of finite order are also investigated.

In the second part of the work, a numerical method for obtaining approximate solutions is
constructed. The convergence is proved, provided that a smooth solution exists. An efficient
numerical scheme is proposed.

The author is grateful to Academician V. E. Zakharov and A. I. Dyachenko for suggesting this problem
and their interest in this work.
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Introduction

The dynamic interaction of N symmetric pairs of point vortices with a neutrally buoyant 2D rigid
circular cylinder in the inviscid Hamiltonian model of Shashikanth, Marsden, Burdick and Kelly (SMBK)
[1] and Shashikanth [2] is examined. A schematic sketch is shown in Figure 1. The cylinder moves freely
along a straight line under the pressure field induced on its surface by the flow. The model may be thought
of as a section of an inviscid axisymmetric model of a neutrally buoyant sphere interacting with N coaxial
circular vortex rings and has applications to problems such as fish swimming. The Hamiltonian structure
of this half-space model is first presented. The cases N = 1 and N = 2 are then examined in detail.
Equilibria, bifurcations, linear stability and phase portraits are studied and for both these cases an important
bifurcation parameter involving the total linear ‘momentum’ of the system, the strength of the vortex pairs
and the radius of the cylinder emerges.

Fig 1

The symmetric half-space

The phase space of the model is

Psym := {p ∈ P | x1 − xN+1 = 0, y1 + yN+1 = 0, ........

........, xN − x2N = 0, yN + y2N = 0, Lx = constant, Ly = 0},

where P is a Poisson manifold and is the phase space of a rigid circular cylinder dynamically interacting
with 2N vortices when the sum of the vortex strengths is zero SMBK model [1, 2]. Psym is an invariant
subspace under the flow of the SMBK Hamiltonian vector field on P . The vector L = (Lx, Ly) is the linear
momentum variable and (x1, y1, ..........., x2N , y2N ) are the coordinates of the 2N vortices in the body-fixed
frame. The Hamiltonian vector field of this system, tangent to level sets of L, relative to the symplectic form
ΩPsym

:=
∑N

j=1 2Γj (dxj ∧ dyj) and the Hamiltonian functionHsym : Psym −→ R, which is the body+fluid
system kinetic energy (minus infinite contributions), is then given by

dxi

dt
= 1

2Γi

∂Hsym

∂yi
,
dyi

dt
= − 1

2Γi

∂Hsym

∂xi
, i = 1, ..........., N
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In the above Γi is the strength of the ith vortex in the half-space.

The case N = 1: Define the bifurcation parameter L̄ = Lx/(Γ1R), where R is the radius of the cylinder.
Bifurcations are seen to occur at two critical values of L̄which are obtained (approximately) from numerical
investigations as L̄1 = 1.744 and L̄2 = 2.183 The sequence of bifurcations undergone by the system is as
follows:
1.In the interval −∞ < L̄ < L̄1, there is no equilibirum configuration.
2. In the interval, L̄1 6 L̄ 6 L̄2, there are four moving Föppl equilibrium configurations, two aft of the
cylinder and two fore of the cylinder. Two of these equilibria are stable centers and the other two are unstable
saddles.
3. In the interval, L̄2 < L̄ <∞, two more equilibrium configurations—the moving normal line equilibria–

appear. One is a stable center and the other an unstable saddle. The vortices are located on the ȳ-axis in
these configurations. Thus, there are a total of six equilibrium configurations in this interval.

The case N = 2: Two special cases of this problem yield equilibrium configurations, one in which Γ1 =
= Γ2 = Γ and the other in which Γ1 = −Γ2 = Γ, and in both of which the vortices are symmetrically
located about the y-axis.

Same-signed symmetric equilibria: Bifurcations are seen to occur at three critical values of L̄ which are
obtained (approximately) from numerical investigations as L̄1 = 2.42, L̄2 = 3.277 and L̄3 = 5.529. The
sequence of bifurcations undergone by the system is as follows:
1. In the interval, −∞ < L̄ 6 L̄1, there is no equilibirum configuration.
2. In the interval, L̄1 < L̄ 6 L̄2, there are two equilibrium configurations.
3. In the interval, L̄2 < L̄ 6 L̄3, two more equilibrium configurations appear. Thus, there are a total of four
equilibrium configurations in this interval.
4. Finally, in the interval L̄3 < L̄ <∞,there are again only two equilibrium configurations.
Linear stability analysis shows that the eigenvalues associated with these equilibria are real pairs at sampled
points on the equilibrium curve and thus these equilbria are unstable.

Opposite-signed symmetric equilibria: Bifurcations are seen to occur at one critical value of the
parameter L̄ obtained (approximately) from numerical investigations as L̄1 = 0.3535. The sequence of
bifurcations undergone by the system is as follows:
1. In the interval, −∞ < L̄ 6 L̄1, there is no equilibirum configuration.
2. In the interval, L̄1 < L̄ <∞, there is only one equilibrium configuration.
Linear stability analysis at sampled points on the equilibrium curve again show eigenvalues that are real
pairs and hence these equilibria are unstable.
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