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RUBBER ROLLING: GEOMETRY AND DYNAMICS OF 2-3-5 DISTRIBUTIONS
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Nowadays, the mathematical structure of holonomic mechanical systems is understood
profoundly, thanks to the mathematics genealogy going back to Euler, Lagrange, Jacobi,
Hamilton and Liouville. All this work lead to the beautiful geometrical structures of symplectic
and Poisson geometries.

In contradistinction, the mathematical structure of nonholonomic systems is still a "developing
country". We address here two lines of research.

The first concerns the affine connection approach advocated by E. Cartan in a communication
at the 1928 International Congress of Mathematicians, where he introduced the notion of a
nonholonomic affine connection ∇D. He showed that the equations of motion for a mechanical
system with nonholonomic constraints can be expressed using an affine connection expressed
in terms of a coframe over the n-dimensional configuration manifold adapted to the kinetic
energy and constraint distribution. For a particular mechanical system there is a family of
adapted coframes all leading to the same equations of motion. The family is parameterized by a
Lie subgroup of Gl(n). A fundamental question is to determine differential invariants uniquely
associated to a family of coframes. A second fundamental problem is to deterimine the (local)
symmetry algebra of the system. The maximally symmetric systems are those for which the
differential invariants are constant. In this case the differential invariants are the structure
constants for the Lie algebra of symmetries. Cartan essentially settled the strongly nonholonomic
case, where D + [D,D] = T Q using his equivalence method, but discouraged the study of
nonholonomic connections whose distributions are not strongly nonholonomic, predicting that
it would be difficult to construct the invariants.

Nonetheless, our previous work on Engel (2-3-4) distributions, which became tractable
because of refinements in Cartan’s methodas well as computer algebra systems, motivated us
to pursue the next case in line, 2-3-5 distributions, which have some remarkable aspects. In
his famous five variables paper Cartan applied his method of equivalence to make an extensive
study of nonintegrable rank to distributions defined on five-dimensional manifolds. Among his
results, Cartan showed that maximally symmetric rank two distributions have a symmetry
algebra isomorphic to the 14 dimensional exceptional Lie algebra of non-compact type G∈. This
distribution is physically realized by the rolling of a sphere of radius a over a sphere of radius 3a.
There has been renewed interest in this paper in recent years. Montgomery and Bor give an explicit
description of the infinitesimal action of G∈ on the ball-ball system and Zelenko gave a geometric
interpretation of the fundamental differential invariant constructed by Cartan.

In the first part we apply Cartan’s method of equivalence to determine the fundamental
invariants of a mechanical system define on a 5-dimensional configuration manifold with a rank
two nonholonomic constraint. We also determine a bound on the dimension of the symmetry
algebra of such a system. In the second part we look at the nonholonomic dynamics of a convex
body rolling without sliping or twisting on a surface. The associated distribution has growth
2-3-5. The Lagrange-d’Alembert equations describe the motion of "rubber" coated bodies, in
contradistinction with "marble" bodies that have an extensive literature. We call attention to the
situation where the "rubber" body rolls over a sphere. It is a generalized Chaplygin system and the
dynamics reduces to T ∗ S2 with a non-closed 2-form.

Our primary example is that of a (rubber) Chaplygin ball, balanced but dynamically asymmetric:
the principal moments of inertia may be unequal. In the sphere-sphere case, it is actually a L − R
Chaplygin system, and the 2-form is conformally symplectic: the reduced system is Hamiltonian
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after a coordinate dependent change of time scale. In particular, there is a smooth invariant
volume.

We present some conjectures about possible integrable cases, and we inquire if the 3:1 ratio
keeps some vestige of the G∈ distributional symmetry.

HOMOCLINIC AND PERIODIC ORBITS IN HAMILTONIAN SYSTEMS WITH A
SADDLE-CENTER EQUILIBRIUM
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Consider a family of real analytic two degrees of freedom Hamiltonian systems with a saddle-
center equilibrium p, Hµ(p) = 0, µ ∈ R2. Suppose for µ = 0 the corresponding Hamiltonian
system has a homoclinic loop Γ to p. Evidently, for µ 6= 0 the loop is already destroyed, but some
multi-round loops can exist. The present result concerns the existence of homoclinic orbits of the
roundness 2k · 3m (k, m ∈ Z+, k + m > 1) in nonresonance case.

We also prove that in the nonresonance case in some neighbourhood of every such multi-round
homoclinic orbit there exist four countable families of one-round periodic orbits, accumulating at
the homoclinic orbit.

This work was supported by CRDF (grant RU-M1-2583-MO-04).
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Three models have been investigated: two barotropic models, where submerged obstacles
had axisymmetric and elliptic forms respectively, and one two-layer model with the delta-shaped
obstacle in the bottom layer, which produces a point topographic vortex. When we set periodic
oscillations of the running current for the above cases, we obtain three different dynamic systems,
each one having 3/2 degrees of freedom. It’s well known, that chaotic properties of such dynamical
systems strongly depend on frequency of flow oscillations. We carried out direct numerical
simulation of chaotization in the above systems for a wide range of oscillation disturbance
frequencies and found that for chaotization degree there exist besides the global maximum
several local maxima. In the present work, we performed new highly accurate calculations for
barotropic models with Gauss and elliptic obstacles examined earlier. This new study has shown
also local maxima, but very weak. The mechanism of influence of flow oscillation frequency on
chaotization degree was explained in terms of nonlinear resonances. It was shown, that the
optimum frequency for chaotization is equal to the maximum frequency of the fluid particle rotation
in the vortex; i.e. this is the frequency where the nonlinear resonance, multiple to 1, vanishes in the
corresponding system. Other local maxima of chaotization correspond to disturbance frequencies,
where nonlinear resonances with multiplication more or less than 1, vanish. It was shown that the
optimum frequency range for trajectory chaotization lies between the maximum frequency of the
rotation of the fluid particle and a half of this maximum frequency.
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The so called Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation belongs to the set of
non-linear acoustics models, such as the well-known Riemann wave equation (or the non-
linear transfer equation), Burgers equation, Korteweg–de Vries (KdV) equation, Khokhlov–

Zabolotskaya (KZ) equation, Zakharov–Kuznetsov equation and Rudenko–Sukhorukov equation
(see about these equations, for example, the book B. K. Novikov, O. V. Rudenko, V. I. Timoshenko
Nonlinear Underwater Acoustics, Amer.Inst.of Physics, New-York, 1987). These models are
derived from the linear or non-linear wave equation for the acoustic pressure, usually, under the
hypothesis of small variations of this pressure. More precisely the KZK equation has the form

αuzτ = (f(uτ))τ + βuτττ + γuτ + ∆xu, (1)

where uτ = uτ (z, x, τ) is the acoustic pressure, (z, x) ∈ IR×IRd, d = 1, 2 are space variables
and τ is the retarded time. The nonlinear function f in the KZK equation is quadratic, i.e., f(s) =
= θs2, although for the description of space-limited beams subject of the diffraction and self-action
effects it can be taken as cubic: f(s) = θs3 (see the same book) and so, in the real physical setting,
f may have a more complicated shape. On the other hand, all these models are derived under the
assumption of small oscillations of the pressure, and so, one can always consider f as quadratic
or cubic for |s| ≤ s∗ and anything different for |s| > s∗ for some finite s∗. If |uτ | is smaller than s∗,
then the two models (with f(s) = θs2, ∀s and f(s) = θs2 for |s| ≤ s∗) coinside. The advantage of
this modified shape of f is that (as it will be proved below) we can get the global existence theorem
as soon as f has bounded derivative.

These arguments motivate us to consider the “KZK type equation”, that is, equation (1) with
a nonlinearity f admitting a bounded derivative. Let us emphasize that this shape gives a more
convenient physical description than the classical quadratic shape.

Another particularity of the model we consider in the present paper is that the coefficients are
rapidly oscillating functions of z. This corresponds to the heterogeneous (stratified in the direction
of the axis z) acoustic media. This feature complicates the problem, although it allows us to
apply the homogenization method (see for example, the book N. S. Bakhvalov, G. P. Panasenko
Homogenisation: Averaging Processes in Periodic Media), Nauka, Moscow, 1984 and Kluwer,
Dordrecht—Boston–London, 1989) to obtain the homogenized model. Its solution is close to the
one of the initial problem.

It seems that so far there was no any publication on the existence and uniqueness of the
solution for the KZK (or KZK type) equation, although the authors discovered that independently
and simultaneously these questions (as well as the derivation of the KZK equation form the
Navier-Stokes model) in the case of constant coefficients were studied by C. Bardos and
A. Rozanova. They consider the KZK equation in the whole space (x ∈ IRd) in the case of constant
coefficients. In the present study we shall consider the varying (and even rapidly oscillating)
coefficients of the KZK type equation set for x ∈ ω, where ω ⊂ IRd is a bounded domain. The
boundedness of f ′ will ensure the global existence. In the case of stratified media we homogenize
the KZK type equation and prove the closeness of the solutions of the homogenized and initial
models.

These results can be applied in underwater or atmosphere acoustics.
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The study of transport of pollutants is an important issue. This work deals with exchange
matrix method described by Spencer and Wiley [3]. We apply this method to problems of
petroleum patch transport in tidal flows. A good approximation of such flows was suggested by
Zimmerman [4]. He deviated from earlier attempts at modeling tidal flows by means of turbulence
theory and adopted the idea of chaotic advection, first put forward by Aref [1]. Zimmerman
suggested a kinematical model which is based upon a superposition of a tidal and a residual current
flow field. The kinematical model describes a motion of a mathematical point that moves at each
instant with the velocity corresponding to its instant position. The petroleum particle is supposed
to be inertialess, not subjected to diffusion or interfacial tension. The residual time independent
current field is an infinite sequence of clockwise and anticlockwise rotating eddies. Streamlines of
the residual velocity field divide the whole area into square cells of equal area, with elliptic points in
the centers and hyperbolic points in the corners of cells. The tidal field plays a role of a perturbation
of the Hamiltonian system (the stream function is the Hamiltonian for the residual flow). In general
this perturbation leads to chaotic dynamics and could be studied in different ways, for example, by
means of Poincar’e sections. However, in pollutant spreading problems, we are interested in the
short term history of pollutant transport. Poincaré sections present the history of motion of points
in some area during a long time interval, say, during a thousand periods of a tidal flow. (For the
problem of petroleum patch transport this corresponds to the history of one point during almost
one and a half year.) On the contrary, ecological considerations demand that disastrous spread
of pollution has to be stopped in days or weeks. Therefore, we need to know which part of the
Eulerian space will be polluted in a short time and, more importantly, how much petroleum will
leak to some specific part of a sea. The orbit expansion method, developed for a quantification of the
chaotic transport and exploited an assumption that the contributions of tidal and residual currents
are of different orders (the tidal is much stronger), does not give answers to those questions. In our
case, it is important to know not the mixing region (where presumably mixing is instantaneous)
obtained by the long time tool Poincaré sections, – or the rate of material exchange (which could
be high in a very narrow domain), but how uniformly this mixing region is distributed over the
whole area during a specific finite interval of time.

We suggest a different approach for an estimation and quantification of pollutant transport,
based on the statistical quantities such as a coarsegrained density [2]. First step is to present
a petroleum patch, for example, as a circular blob continuously occupying some part in marine
or coastal zone. Then we use a contour tracking algorithm [2] to find the blob’s boundary in
Eulerian space at any moment of time. Knowing the position of the contour line (the boundary
of the petroleum patch) we can construct an Eulerian description of the mixing process, giving
an opportunity to quantify mixing at any moment of time. The second step is to divide the whole
costal area of investigating by cell grid in the square boxes with the side size δ and the area Sδ =
= δ2. We may number all cells starting from 1 to N . The next step is to compute the exchange
matrix coeffcients Dij using Spencer and Wiley method.

Coefficient Dij is equal to the fraction of the petroleum originally occupying completely the j
box which is moving by flow field to the i cell. This is the basic step in the matrix method. In order
to compute the value of coefficient Dij we put petroleum patch as a square blob continuously
occupying the j cell. Then we use a contour tracking algorithm that conserves both area and
topological properties (connectedness and non selfintersection) to find the blob’s boundary in
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Eulerian space under investigation at the end tidal cycle. Then we project the found blob’s
boundary in to the i cell. The ration of dyed material in that i cell S

(i)end
b to the area of initial

dyed blob S
(j)start
b in the j box is equal Dij , namely

Dij =
S

(i)end
b

S
(j)start
b

=
S

(i)end
b

Sδ
(1)

Then using this matrix we can predict transport of petroleum from any place (any box) in the area
to an arbitrary location and determine the time when it happens. If a

(0)
j is the initial course grained

density in the j cell, the density in the i cell after n cycles are given by the elements of the matrix

[a
(n)
i ] = [a

(0)
j ][Dij]

n = [a
(0)
j ][D

(n)
ij ] (2)

If a
(n)
i is not zero then petroleum polluted the i cell and n number shows after how many tidal

cycles it is happened. For zero a
(n)
i it is necessary to have either zero value of the a

(0)
j or D

(n)
ij . We

want to stress that for computing of D
(n)
ij we need to know flow field. It could be done by analytical

presentation or by numerical approximation or even by experimental observations.
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Efficient experimental technique and tools for study of the physical processes in view are
developed, as well as experimental equipment and new methods for measurements of turbulent
fluctuations in the turbulent boundary layer. The fluctuating wall pressures that develop beneath
a turbulent boundary layer have received extensive analytical and experimental investigation
over the past few decades [1, 2]. In fluid mechanics and hydrodynamical acoustics the principal
interest in turbulent pressure fluctuations lies in their role as a source of structural excitation and
reradiation of acoustic noise. We developed a new experimental method for study the dynamics
of near-wall turbulence problems [3, 4] is based on the higher moments investigation. The
models that most adequately describe the spatial structure of turbulent pressure are the continual
statistical models specified by a characteristic functional which provide a complete statistical
description of the random field of pressure fluctuations. In this paper, we analyze simple analytical
representations of the characteristic functional of turbulent wall-pressure fluctuations.
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The functional approach to measuring turbulent pressures provides an almost exhaustive
description of the random field on the basis of the experimentally measured characteristic
functional of the turbulent fields. A method for the experimental study of the characteristic
functional and multidimensional distributions of parameters of the field of turbulent pressure
fluctuations is described. Functional approach is based on representation of the statistics of
turbulent pressure in the form of an estimate of the characteristical functional. The method
combines the analog spatial averaging of turbulent pressure fluctuations over transducer aperture
and single-channel statistical processing of signals from pressure transducers with different
apertures. The functional approach is tested in the experiment with a wall-bounded turbulent jet
flow. The functional approach makes it possible to obtain an exhaustive description of random
field based on experimental investigation of characteristic functional of wall-turbulent pressure
field. The recent studies of turbulent pressure fluctuations are aimed not only at solving applied
problems of noise and vibration generation in boundary-layer flows but also at improving our
knowledge of the physical processes that occur in turbulent flows. The main problem is related
to the turbulent energy transformation near the flow boundary. However, the physical processes
in a turbulent boundary layer are still poorly understood. By now, it is established that, turbulent
pressure fluctuations are related to at least two types of near-wall turbulent structures, namely,
convective turbulent structures (i.e., free turbulence carried by the mean flow) and turbulence
generated by the shear flow formed in the wall region of the turbulent boundary layer. The large-
scale motion is represented by accumulations of small-scale structures of different dimensions,
intensities, and orientations. In view of the new understanding of the processes of near-wall
turbulence generation and dissipation and the role of coherent structures formed in the boundary
layer, the problem of the diagnostics of the spatial structure of near-wall turbulence as well as the
application of new experimental techniques and the search for more informative characteristics of
turbulence attract particular interest. Now, it is evident that, with the use of conventional methods
based on the study of statistical moments of the first and second orders, this problem cannot
be solved, because the conventional correlation approach leaves out some important properties
of turbulence and provides insufficient information on the flow structure. Simple models of the
characteristic functional are considered in the context of analyzing the probabilistic characteristics
of turbulent pressure fluctuations. The Gaussian model of the spatial characteristic functional
of wall-pressure fluctuations is shown to be more appropriate for jet flows, while the Poisson
model better describes the characteristic features of near-wall-pressure fluctuations in a turbulent
boundary layer. The suggestion is made that the representation of the characteristic functional as
a superposition of simple models can reduce the experimental determination of the characteristic
functional and the multidimensional distribution functions to measuring only a limited number
of parameters and dependences characterizing the turbulent flow under study. In this case, using
the simple functional models, one can reduce the experimental determination of the characteristic
functional and multidimensional distributions of the turbulent pressure field to the measurement of
a limited number of parameters characterizing the turbulent flow under study. Namely, one should
measure the spatial correlation function of turbulent pressure fluctuations for the Gaussian field
and the some dependences for the Poisson component of the turbulent pressure field.
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The paper is devoted to stability of the stationary rotation of a system of n equal point vortices
located at vertices of a regular n-gon of radius R0 inside a circular domain of radius R with
a common center of symmetry. T. X. Havelock stated (1931) that the corresponding linearized
system has an exponentially growing solution for n ≥ 7, and in the case 2 ≤ n ≤ 6 – only if
parameter p = R2

0/R
2 is greater than a certain critical value: p∗n < p < 1. In the present paper

the problem on stability is studied in exact nonlinear formulation for all other cases 0 < p ≤ p∗n,
n = 2, . . . , 6. We formulate the necessary and sufficient conditions for n 6= 5. For the vortex
pentagon it remains unclear the answer to the question about stability for a null set of parameter
p. A part of stability conditions is substantiated by the fact that the relative Hamiltonian of the
system attains a minimum on the trajectory of a stationary motion of the vortex n-gon. The case
when its sign is alternating, arising for n = 3, 5, did require a special study. This has been analyzed
by the KAM theory methods. Besides, here are listed and investigated all resonances encountered
up to forth order. It turned out that two of them lead to instability.

Some results of the present work were briefly reported in [1, 2].

References

[1] Kurakin, L. G. Stability, resonances, and instability of regular vortex polygon in a circular
domain. Dokl. Akad. Nauk 399 (2004), pp. 52—55, [Dokl. Phys. 49 (2004), pp. 658–661.]

[2] Kurakin, Leonid. On stability of a regular vortex polygon in the circular domain. J. Math. Fluid
Mech. 7 (2005), suppl. 3, pp. S376–S386.
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Expressions are derived for the propagation speed of a monopole in a stratified fluid on a sphere.
Numerous publications exist on the evolution of vortices in a one or two-layer fluid on the beta
plan. Recently the propagation of point vortices and rotating discs on a sphere have been studied
(see e.g. [1, 2, 3, 4]). Van der Toorn [5] was the first to generalize the reduced-gravity vortex motion
to the full sphere in his PhD thesis. Ripa [3, 4] studies the same problem in the open literature. The
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full problem of a rotating body of mass with finite dimension in a stratified fluid has not been tackled
before.

By integrating the momentum equations over the sphere equations for the propagation speed
of the center of mass of the vortex are obtained. Terms related to precession and nutation are
recovered, and the role of extra terms related to the inner motion of the vortex and the stratification
is illuminated. Although the expressions are complicated, the meaning of the different terms is
clear.

Special emphasis is put on (nearly) steady state propagation. Because the mass anomalies in
all fluid layers have to move with the same speed extra conditions on the propagation speed are
obtained which allow a solution in terms of simple input variables.

Some time is spent on the propagation mechanism of cyclones, which, because of their
negative mass anomaly, are accelerated opposite to the direction of the net force on the mass
anomaly.
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Transition to chaos in the problem of motion of four point vortices in a plane is considered. A
new effective method of order reduction for a system of point vortices in a plane is suggested. For
the case of four vortices, the existence a cascade of period-doubling bifurcations is indicated.
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The propagation of helical perturbations to a columnar vortex seems to have been studied
first by Lord Kelvin whose results were published in 1880. In cylindrical coordinates (r, θ, z), one
considers the evolution of infinitesimal perturbations (ur, u − θ, uz) superimposed on a flow with
velocity profile {0, V (r), 0}. More than 100 years later, the subject remains of considerable interest
because of its pertinence to applications in both engineering and geophysical fluid dynamics. A
swirling flow is one with velocity components [0, V (r), W (r)] and the definitive paper treating
the linear stability of such flows is by Howard and Gupta [2]. By combining the continuity and
three momentum equations, they obtained a single differential equation for the radial perturbation
velocity. In order to separate variables, this quantity can be written as ur = εu(r)sinξ, where
ξ � 1 is an amplitude parameter and the phase ξ = kz + mθ − ωt, k and m being the axial and
azimuthal wavenumbers and ω the frequency. Far downstream of an airplane, the axial velocity in
the trailing vortices is small so many studies motivated by that application take W = 0. The ODE
derived by Howard and Gupta can then be written

γ2D{SD∗u} − {γ2 +
mγ

r2

(
D[SD(rV )] − 3S

r D(rV )

)
− 2V k2S

r Q(r)}u = 0, (1)

where

D = d
dr

, D∗ = d
dr

+ 1
r , γ(r) = mV

r − ω, S = r2

m2 + k2r2
and Q(r) =

D(rV )
r . (2)

In the case of a neutral or weakly amplified mode, critical point singularities occur at any
value of r for which γ(r) = 0. Let us discuss briefly the significance and implications of this
singularity. Critical point singularities occur in many shear flows and they are a signal that
some neglected effect, usually viscosity or nonlinearity, is important in the neighborhood of the
singularity. Because our interest here is in high Reynolds number applications, nonlinearity is
the appropriate choice. To deal with the singularity, we therefore introduce a thin critical layer
centered on the critical point rc , in which nonlinear effects are important. The singularity is
in the form of an algebraic branch point and series solutions of (1) obtained by the method of
Frobenius have a behavior almost identical with those of the Taylor-Goldstein equation governing
stratified shear flows. An equivalent Richardson number can even be defined that is proportional
to Q(r), the vorticity defined in (2); however, this does not lead to a stability criterion because
the analogy between rotating and stratified flows is only valid for axisymmetric disturbances.
The mathematical similarities are nonetheless worth noting and we can expect the solutions of
the nonlinear vortex critical layer to yield coherent structures analogous to those in a stratified
shear flow. The latter bear a strong resemblance to radar observations of large amplitude waves
propagating in the atmosphere, as discussed in the review article by the first author [see Fig. 4
in [3]]. More recent work by Troitskaya [5], derives relationships valid at O(1) Richardson number
that relate nonlinear effects such as mean flow distortion to changes in the Reynolds stress as the
critical layer is crossed. We have employed the same methods that she used to determine changes
in the mean velocity and vorticity resulting from the wavemean flow interaction. Essentially, the
governing equations are averaged in the ξ direction and then integrated across the critical layer.

The critical layer equations are comprised of a system of four coupled PDEs. The continuity
and radial momentum equations are linear, the latter representing a balance between pressure
gradient and the linearized centrifugal force. The axial and azimuthal momentum equations,
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however, are highly nonlinear because of the convective inertial terms. The leading order viscous
terms are multiplied by a parameter λ = 1/Reε3β, where Re is the Reynolds number and the
constant β varies between 1/2 and 2/3. The condition λ � 1 means that the nonlinear critical
layer thickness εβ is much greater than that of the viscous critical layer, whose thickness is Re−1/3.
In most applications outside of the laboratory, that condition will be easily satisfied. In the inviscid
λ = 0 limit, analytical solutions can be obtained using the method of charac teristics. This is most
surprising because the system has only two characteristic directions, rather than the four required
to be totally hyperbolic. The arbitrary functions in the characteristics solution can be determined
by matching above and below the critical layer. However, there is a region of closed characteristics
analogous to the Kelvin cat’s eyes in the plane wave case. In the 2D case, the vorticity must be
constant within a region of closed streamlines according to the PrandtlBatchelor theorem. We
were able to extend that theorem enabling us to find the vorticity jump across the critical layer
and to match all variables. While the structure of the flow is of interest in its own right, an equally
important question relates to solutions of the eigenvalue problem associated with (1). In the case
of stratified shear flows, we know that nonlinear critical layers permit the existence of singular
neutral modes under conditions where they would be prohibited in a linear theory. This is possible
because the jump conditions across the singularity are different thereby permitting new solutions.
The existence of such solutions is important in applications such as the vortex interaction between
trailing vortices in the aircraft wake problem. Sipp and Jacquin [4], for example, have argued that
the dispersion relation for Kelvin modes on a continuous vortex profile is not compatible with the
conditions required for the elliptic (or short wave cooperative) instability. Their argument is based
on linear viscous stability calculations for a LambOseen vortex. We have shown, however, that
the required modes do exist if the critical layer is nonlinear rather than viscous. To conclude, we
mention a potential application of the theory that we intend to pursue and that is to hurricanes.
A hurricane is a highly axisymmetric rapidly rotating vortex. Radar ob servations show, however,
asymmetries such as spiral rainbands that some meteorologists believe are the result of “vortex
Rossby waves”. The latter are “Rossbylike” waves that are oscillatory in the azimuthal and radial
directions. In recent numerical simulations, Chen, Brunet and Yau [1] determined that the vortex
Rossby waves have critical layers located about 50 km from the eye of the hurricane (see Fig. 11).
These are time dependent and may be responsible for the intensification of the hurricane through
momentum absorption of the vortex Rossby waves.
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WEAK TURBULENCE OF SHORT EQUATORIAL WAVES
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We derive a normal form of nonlinear equations for short equatorial waves considered in the
framework of the rotating shallow water model. We show dynamical splitting of equatorial Rossby
and inertia-gravity waves. We derive an effective Hamiltonian for the short inertia-gravity waves
and consider their kinetics using the weak turbulence approach. Stationary power- law energy
spectra are obtained. They have different slopes for eastward and westward propagating waves
due to the fact that resonant triads of inertia-gravity waves exist only in specific regions of the
phase-space.

DYNAMICS OF HAIRPIN VORTEX PACKETS IN WALL TURBULENCE
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1Kiev National Taras Shevchenko University, Ukraine
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Summary

The talk addresses the experimental, analytical and numerical modelling of the ynamics of
concentrated vortex packets over a rigid smooth plane. To answer the principal question why
and how does fluid in outer region of the turbulent boundary layer organize itself into hairpin
streamwise vortex packets with low-speed convective velocity we developed the vortex filament
model of hierarchy of hairpin packets.

Introduction

The coherent structure of the turbulent boundary layer has been studied for about fifty years.
Based on a combination of analysis and physical insight, Theodorsen in 1952 proposed a simple
vortex model as the central element of the turbulence generation process in shear flows. It took the
form of a hairpin (or horseshoe)-shaped vertical structure inclined in the direction of mean shear
(see Fig. 1). Since that time a large amount of turbulence structure models has been proposed
by numerous investigators, see e.g. [1] for a review. These models typically involve similar single
or multiple configurations of hairpin vortical structures. Probably the most convincing evidence of
the existence of such vertical structures embedded in fully developed turbulent boundary layers has
come from recent experimental [2] and computational (e.g. [3, 4]) studies. The idea is to explore
the flow of effectively inviscid fluid with embedded vorticity, with topology change allowed upon
close encounters of vortical fluid regions.

Vortex filament ε-model
We consider thin vortex filaments over a flat rigid plane (with no-penetration conditions)

embedded into a shear flow of an effectively inviscid fluid. Virtual mirror filaments maintains no-
penetration condition. The induced velocity field is defined by means of the Biot-Savart law:
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Ux = 1
4π

∫

L

Γ(x′, y′, z′)
(y − y′)dz′ − (z − z′)dy′

{(x − x′)2 + (y − y′)2 + (z − z′)2}3/2
,

Uy = 1
4π

∫

L

Γ(x′, y′, z′)
(z − z′)dx′ − (x − x′)dz′

{(x − x′)2 + (y − y′)2 + (z − z′)2}3/2
,

Uz = 1
4π

∫

L

Γ(x′, y′, z′)
(x − x′)dy′ − (y − y′)dx′

{(x − x′)2 + (y − y′)2 + (z − z′)2}3/2
.

The main difference from traditional models is that we consider the strength of the filament
dependent on its position. Lagrangian vortex models track fluid elements containing vorticity. The
kinematics is governed by geometric relations.

Fig 1. Representation of hairpin vortex by a vortex
filament.

Fig 2. Integration according to the Biot-Savart
law.

Advantages of the model

• Numerical integration by the formulas of the various order,
• It accounts the cross-section size of the vortex tube,
• Representation of the vortex tube by a smooth curve,
• Description of vortex tube by small number of markers.

Disadvantages of the model

• Increasing the order of integration methods leads to longer calculation.

Results

Fig 3. Dynamics of two hairpin vortices above a rigid wall in a shear flow.

Conclusion

We addressed the global vorticity dynamics by representing each hairpin vortex as a filament
with a ‘core parameter’, interacting via the Biot-Savart law. The contour kinematic spline method
for tracing the vortex filaments in a shear flow over a rigid wall was developed. Special attention
is paid to the soliton-like behaviour of the vortex filaments over the rigid plane. Comparisons
with experimental results and DNS data show a good correspondence. Although an extreme
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idealization, the analytical model of vortex filaments appears to shed considerable light on what
to expect in the laboratory experiments. The results obtained for the concentrated hairpin vortex
structures confirm von Kármán [5] words that “many peculiarities of real flow can be understood
based on the notion of existence of separated vortices in the flow and the laws of motion of such
vortices in an ideal fluid”.
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SOME QUESTIONS OF DYNAMICS OF SUBSTANCE IN THE SPHERICAL VORTEX
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The detailed analysis of the experimental data thus far accumulated on different kinds of
interactions allowed us to develop the concept of charge - the basic element of interactions [1, 2, 3].
An appearing of charge is conditioned by the internal mechanism of motion of the liquid viscous
mass, forming the spherical vortex. It was found that the charge is fluxes (jets) of particles –

volume elements of the mass of the vortex, flowing out from the centers of interacting bodies
in radial directions by electrostatic interactions and from out poles of magnets by magnetic
interactions. These appearing in the center of the spherical vortex fluxes of substance carry rotation
moments, posses kinetic energy and create dynamical or velocity pressure [4, 5, 6], which is
responsible not only for formation of stratified layers in the body of the vortex, but for creating
of ring vortices - convection cells [3], being the form of existence of radiation outside the vortex
itself.

The hydrodynamic model of an inertial structure of interacting objects is presented and
mechanisms of formation of various charge-forming fluxes of substance were considered.
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INFLUENCE OF AN ICE COVER ON EDGE WAVES

SERGEY V. MUZYLEV
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Edge waves on ice-covered water are analyzed in the linearized theory for a plane-sloping
beach with a straight coastline. These waves propagate along the coast and have an amplitude
which decays exponentially away from the shoreline. The problem is examined without making
a hydrostatic assumption. The sea water is considered homogeneous, inviscid, irrotational and
incompressible. The ice is taken as of uniform thickness, with constant values of Young’s modulus,
Poisson’s ratio, density and compressive stress in the ice. The boundary conditions are such that
the normal velocity at the bottom is zero and at the undersurface of the ice the linearized kinematic
and dynamic boundary conditions are satisfied. We present and analyze explicit solutions for the
edge flexural-gravity waves and the dispersion equations.

This study is supported by the grants from RFBR 05-05-64212 and 06-05-65210.

TRIPLET OF HELICAL VORTICES
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Results of laboratory search and numerical identification of a stable triplet of helical vortices
embedded in a strong swirling flow are presented. As basic flow configuration, swirling flows
induced by a rotating cover in a closed cylinder have been considered. The main idea of the study
is to determine the essential influence of an assigned flow on the stability of helical multiples, that
has previously been established theoretically [1]. From the theoretical study it was shown that the
stability zone of a helical multiple embedded in a swirl flow essentially extends to very small values
of the helical pitch when the strength of the assigned axisymmetric flow field is increased (Fig. 1).

The experimental investigation was carried using simultaneously two diagnostics methods:
Particle Image Velocimetry (PIV) to determine velocity fields by particle tracks and Laser Doppler
Anemometry (LDA) to establish time-histories [2]. The swirling flow in the cavity was measured
in a horizontal cross-section of the cylinder. The flow was systematically investigated for flow
structures and, as a result, the existence of a stable vortex triplet was found at operating conditions
corresponding to those predicted by the theoretical stability analysis (Fig. 1). Fig. 2 shows the
measured velocity field induced by the vortex triplet after separation of the axisymmetric flow field.

For the same flow regime the 3D unsteady Navier-Stokes equations were solved numerically
to identify the 3D structure of the vortex triplet. As a result, the existence of steady vortex triplets
with a strongly pronounced helical structure has now been determined both experimentally and
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Fig 1. Stability regions for helical triplets embedded in a assigned flow for different values of the circulation
ratio 0 (———); 0.5 (– – – –); 5 ( - . - . - . - .); 50 (- - - - - -); 500 ( . . . . . . . . . ..) as function of helical pitch
and , the ratio of the assigned vortex radius to the triplet radius. The circulation ratio designates the ratio
between the total circulation of the triplet and the vortex in the assigned flow. Stable regions are located on
the side of the curve with the most intensive color and the crosshatched square indicates flow characteristics
for the regimes in which a helical vortex triplet has been detected in the lid-driven rotating cavity.

Fig 2. Measured velocity field induced by vortex triplet in a horizontal cross-section.

numerically. There exist several investigations of flows in the lid-driven rotating cavity (e.g., [3, 4])
in which various types of periodic multiplicity disturbances of the axisymmetric vortex field were
detected both numerically and experimentally. However, in the present study the stability of a
helical vortex triplet has been predicted theoretically for the first time, and its existence proven
experimentally as well as numerically.
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FAMILIES OF TRANSLATING NEUTRAL VORTEX STREET CONFIGURATIONS
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A simple but useful model of the 2D wake of a bluff body is a periodic arrangement of point
vortices in the plane, with circulations and positions adjusted so that the total circulation is zero
and all vortices have the same velocity. A complete account of the cases of two and three vortices
per fundamental strip may be found in [1]; examples and many other references are collected in [2].

A fruitful method for constructing stationary non–periodic vortex configurations is to place
vortices of circulations +1/-1 or +1/-2 at the roots of polynomial solutions to a certain bilinear
differential equation of hypergeometric type [3, 4, 5]. In the present work this technique is
adapted to allow the construction of translating neutral vortex street configurations. A multilinear
ordinary differential equation is derived that corresponds to the periodic case with arbitrary vortex
circulations. Families of solutions for +1/-k systems are found as well as for systems with more
than two distinct circulations. Also, a construction in [5] that generated stationary non-neutral
vortex street configurations is adapted to find solution families that are neutral and have arbitrary
common velocity. Some of these solution families are particularly general in that they contain
continuous parameters other than the common velocity.
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