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Invariant surface, with respect to Hamiltonian dynamics, is wound by a particle trajectory in
phase space. The surface is filamented if it has a topological genus more than one, i.e. if it is
equivalent to a sphere with more than one handles. Dynamics of particles or field lines along
the filamented surfaces can be found in fluids, tokamak plasmas, and solar corona. Geodesics
along the filamented surfaces are not integrable [1]. Similar statement can be conjectured for
trajectories that wind filamented surfaces. In some simplified situations the nonintegrability of the
dynamics corresponds to a kind of randomness with zero Lyapunov exponent, called pseudochaos.
We consider a situation when the study of pseudochaotic dynamics can be reduced to study
dynamics in rectangular billiards with bars (slits) inside. All results are formulated for ensemble
of trajectories with irrational tangents. Trajectories in these billiards can be considered applying
Diophantine approximation. It is speculated, on the basis of simulations, that trajectories are
"sticky" to some periodic trajectories, i.e. real trajectories have long almost periodic parts with
periods that appeared from their Diophantine approximants.

Our results are obtained for the probability density P(t) of the Poincare recurrences for
ensemble of irrational trajectories that are wandering along the filamented surfaces. The large
time t→ ∞ asymptotic of the probability density P(t) is a power-wise function: P(t) =const/tγ ,
and the power γ i.e. recurrence exponent, depends on the number of filaments M. The method
to calculate the exponent γ is based on the Diophantine approximation and the renormalization
group equation (RGE) obtained for the distribution of the Poincare recurrences. The expression
for γ (M ) is obtained for large M. On the basis of these results we were able to propose a
fractional kinetic equation (FKE) and estimate the so-called transport exponent, i.e. the exponent
that defines the mean displacement dependence of particles during large time. The FKE is an
analog of the diffusion equation but, in contrary to it, the derivatives with respect to time and
displacement are generally speaking not integer. The technical part of the paper is based on the
generalization of the RGE for P(t) and the scaling properties of continues fractions. The results
are continuation of works [2, 3], and they are compared to the simulations performed in the same
works.

The phenomenon of stickiness of trajectories is discussed from a general concept of dynamics
in the presence of singular zones in the phase space while the singular zones appearance is due to
divergence of moments of P(t) beginning from m≥ γ + 1.
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PART II. SECTIONAL TALKS
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Dominating role of the nonlinear transfer for growing wind-driven waves is discussed in a
number of theoretical and experimental papers (see e.g. [2, 1]). A key outcome of the dominance is
a tendency of wave spectra to keep a self-similar form. This physical fact is built into conventional
experimental parameterizations of wind-wave spectra as a typical incomplete self-similarity: the
spectral shape is assumed to be a quasi-universal one while the total energy content depends
monotonically on a wave age parameter Cp/Uh (Cp is phase speed at peak frequency, Uh is wind
speed at some reference height h). The dependence on wave age describes the effect of wind forcing
and dissipation on spectral growth. Theoretically, the problem can be treated within an asymptotic
approach for the kinetic equation for wind-driven waves (the Hasselmann equation). It leads to the
splitting of wind-wave balance into two parts:

dNk/dt = Snl; d〈Nk〉/dt = 〈Sin + Sdiss〉 (1)

Here Nk is wave action spectral density, d/dt is full derivative and angle brackets mean integration
over the whole wavevector space. First equation (1) says that spectral shape is determined by
nonlinear transfer term Snl only while the second one describes evolution of total wave action
under wave input Sin and dissipation Sdiss and plays a role of a specific boundary condition that
selects the spectral shape and the growth rate of a particular solution.

Self-similar solutions for (1) can be found when total wave action is a power-law function of
time or fetch:

N(k, t) = atαUβ(bktβ); N(k, x) = axαUβ(bkxβ) (2)

In (2) a and b are parameters that should be related to “boundary condition” (second eq.1):
characteristics of external forcing. It leads to time- (fetch-) independent weakly turbulent self-
similarity law that in terms of total wave energy takes a following form

ε ω4
∗
/g2 = αss

[
(ω3

∗
dε/dt)/g2

]1/3
(3)

Eq. 3 relates total energy ε and characteristic wave frequency ω∗ to total flux dε/dt. The
relationship (3) can be extended to a general case as an adiabatic approximation for the system (1).

The self-similarity parameter αss depends on parameters of wave growth, but this dependence
is rather weak due to the property of quasi-universality of spectral shapes implied by the
conventional parameterizations of wind-wave spectra [2] and justified in an extensive numerical
study [1]. The asymptotic weakly turbulent law (3) has been verified for numerical results on
duration-limited wind-wave development and for available experimental fetch-limited power-law
dependences of wave growth collected for more than 40 years [3, 4].
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Fig 1. Top raw — non-dimensional energy vs non-dimensional wave input in numerical runs with different
exponents of total energy temporal growth (in legend), mean (left) and peak (right) frequencies are used for
scaling. Bottom raw — estimates of αss in (3) for numerical results (left, • — artificial, N — “realistic” Sin)
and for fetch-limited field experiments (right).

The trend to the asymptotic law (3) is illustrated by the upper raw of fig. 1 for a series of
numerical runs for different exponents of total energy growth (in legend). The peak frequency ωp

appears to be more representative for scaling (top right) as compared with mean over spectrum
frequency ωm (left top). Estimates of self-similarity parameter αss for numerical solutions of
homogeneous kinetic equation (left bottom) and for experimental power-law approximations of
wave energy and frequency in fetch-limited field experiments (right bottom) gives a reasonably
low dispersion of the estimates and rather close values of αss for the cases of temporal and spatial
wave development. This validates general importance of the weakly turbulent law of wave growth
(3).

The research was conducted under the US Army Corps of Engineers grant W912HZ-
05-P0351, ONR grant N00014-03-1-0648, Russian Foundation for Basic Research N04-05-
64784, ofi-a-05-05-08027 and Russian Academy Program “Fundamental problems of nonlinear
dynamics”.
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Nonlinear non-dissipative and low-dissipative systems with dispersion are investigated. The
equations under consideration contain high-order derivatives. Typical equation is the generalized
Korteweg-de Vries-Burgers equation

at + b1ax + (a2/2)x + b3axxx + b5axxxxx = εaxx

This equation is a model equation for description of various phenomenon. For example it
describes propagation of shallow-water waves under an ice cover. The other models such as
equations of cold plasma, equations of composite material and generalized nonlinear Shredinger
equation were investigated also. Direct numerical simulation for step-like initial data showed that
there are solutions that contain shock structures. For dissipative systems the shock structure is
transition between two homogeneous states. For non-dissipative systems the shock structure is
any transition between homogeneous, periodic, multi-periodic or stochastic states. It is assumed
that states under consideration are described by some simplified or averaged equations with first-
order derivatives and with slow variables T = δt, X = δx, δ << 1. Methods to derive and solve
such systems and methods to get shock structure solutions and boundary conditions on shocks
are developed. Shocks can be observed in numerical solutions of corresponding partial differential
equations then t → ∞ if initial data is step-like (for example a = tanh x). For low-dissipative
case the solution under consideration is stationary, statistically stationary or time-periodic then
t → ∞. For non-dissipative case the solution can be self-similar or stochastic. The other way
is investigation of numerical solutions of ordinary differential equations that describe stationary
solutions (travelling wave equations). Note that the first way permits to examine existence and
stability of the shock while the second way shows only existence. So investigations of shocks are
investigations of attractors and bifurcations of finite and infinite dimensional dynamical systems.

Fig 1
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The method to predict shock structure type is developed. It is based on the analysis of
dispersion curve of linear equations. There are seven evolutionary (stable) types of regular (non-
stochastic) shocks. The type of shock depends on the number of intersections between dispersion
curve ω = ω(k) and the line that corresponds to phase speed of the shock U = ω/k. The solitary
wave type shock (fig. 1, 1) is a transition between homogeneous state and sequence of solitary
waves. There are no intersections for side 1 (right side from the shock) and one intersection for
side 2 (left side) in this case. Kink (fig. 1, 2) is a transition between two homogeneous states, no
intersections for side 1 and no intersections for side 2. Shock with radiated wave (fig. 1 ,3) is a
transition between uniform and periodic state, no intersections for side 1 and one intersection for
side 2 . Kink with radiated wave (fig. 1, 2a) is a transition between uniform and periodic state, one
intersection for side 1 and one intersection for side 2. Shock with two radiated waves (fig. 1, 3a)
is a transition between two periodic states, one intersection for side 1 and two intersections for
side 2. Kink with two radiated waves (fig. 1, 2b) is a transition between two periodic states, two
intersections for side 1 and side 2. In other cases shock structures are structures with stochastic
behaviour caused by multiple resonance interactions of radiated waves are predicted. Example of
such a solution for some large value of t is given below (fig. 2). This solution is observed instead of
regular solution with so-called generalized solitary wave (fig. 1, 1a).

Fig 2

For the case of non-dissipative systems these statements are used directly and for low-
dissipative systems they are used for the analysis of internal shocks of dissipative shock structures.
For rapid variables the system can be treated as a non-dissipative one so the non-dissipative shock
structure can be included as internal structure for construction of dissipative shock structure
described by averaged equations with slow variables. Dissipative terms in the low-dissipative case
must be withdrawn for the analysis of the dispersion curve. Example of regular solution with the
shock with radiated wave is given below (fig. 3).

Fig 3

Direct investigation of travelling wave ordinary differential equations shows the existence of
shocks with resonance two-wave states. These shocks are not predicted by the method described
above but they are observed as internal shocks in low-dissipative shock structures.

For the case of finite dissipation time-periodic shock structure solutions are observed. These
solutions are caused by attraction of two different resonance solutions.

This work is supported by RFBR grant № 05-01-00219.
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The turbulent diffusion models differ significantly from one-dimensional transport models.
Often several different types of transport are present simultaneously in turbulent diffusion.
A variety of forms requires not only special description methods, but also an analysis of
general mechanisms for different turbulence types. One such mechanism is the percolation
transport [1]. Its description is based on the idea of long-range correlations, borrowed from theory
of phase transitions and critical phenomena. These long-range correlations are responsible for
the anomalous transport. It was suggested that we could explain anomalous transport in two-
dimensional cases in terms of the percolation threshold. In the present paper we consider the
influence of drift flow and time-dependence effects on the passive scalar behavior in the framework
of the percolation approach. The renormalization method of a small parameter is reviewed in
continuum percolation models [2, 3, 4]. It is suggested to modify the renormalization condition
of the small parameter of the percolation model in accordance with additional external influences
superimposed on the system. This approach makes it possible to consider simultaneously both
parameters: the characteristic drift velocity Ud and the characteristic perturbation frequency w.
The effective diffusion coefficient D is proportional to w1/7 that satisfactory describes the low-
frequency region w, where the long-range correlation effects play a significant role. The character
of the dependence of Deff on the drift flow amplitude Ud in different regimes is analyzed [4, 5].
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LAGRANGIAN FLOW GEOMETRY OF TRIPOLE VORTEX SIMULATIONS

LORENA A. BARBA1, OSCAR U. VELASCO FUENTES2

1Department of Mathematics, University of Bristol, UK
2Departamento de Oceanografía Física, México

E-mail: l.a.barba@bristol.ac.uk

The tripole is a two-dimensional flow structure consisting of a linear arrangement of three
vortices, of alternating sign. The whole structure rotates in the direction of the core vortex
rotation. It has been observed in the laboratory in rotating [6, 7] and stratified fluid [3], where it
is the product of growth and saturation of the instability of a shielded monopolar vortex. Tripole
generation from unstable monopoles has also been addressed in numerical studies [2, 4]. More
recently, the tripole vortex was observed in the destabilization of a Gaussian monopole by a strong
quadrupolar perturbation [5]. In this case, the structure does not have total circulation equal
to zero (“shielded” case), but rather can have satellites of varying strength. The amplitude of
the quadrupolar component in the initial condition determines whether the flow will evolve into
a monopole or a tripole, and the existence of a critical amplitude has been conjectured [5]. A
parameter study with the goal of determining this critical value for different Reynolds numbers
has been performed and is being prepared for publication [1]. Here we analyse the Lagrangian flow
geometry of the tripole vortex, under varying strengths of the satellite vortices; cf. Figure 1(b).
By looking at the hyperbolic trajectories and their stable and unstable manifolds, calculated from
the numerically generated time evolving velocity field, we make several observations regarding the
tripole. When the amplitude of the initial perturbation is large enough, the stable manifolds fold
and wrap around the areas of negative vorticity, thereby forming a barrier for their mixing. We
also note that the Lagrangian and Eulerian flow geometries differ appreciably, and thus it is not
correct to ascribe the permanence of the satellites to the formation of a “critical separatrix”, as
argued previously [1]. In fact, the separatrices are there at the initial time, even in cases where the
flow axisymmetrizes. The steadiness of the flow is assessed using scatter plots of vorticity versus
stream function, as shown in Figure 1(a). As a quasi-steady tripole is approached, the Lagrangian
and Eulerian geometries are more alike, as in the last frame of Figure 1(c). Similar and additional
observations for various cases will be presented in the final paper.
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a)

b)

c)

Fig 1.
a) (ω, ψ) scatter plots for a tripole withRe = 3×103, and δ = 0.25 the amplitude of the initial perturbation;
two left frames: uncorrected, two right frames: corrected for the tripole rotation. At t = 800, the structure is
quasi-steady.
b) Stable manifolds of the tripole’s hyperbolic trajectories for three different amplitudes of the initial
perturbation. Only the left-most case develops a quasi-steady tripole.
c) Stable and unstable manifolds, and Eulerian geometry (green) for the time-evolving tripole with Re =

= 3 × 103, and δ = 0.25.
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CASCADES OF PERIOD MULTIPLYING IN PLANAR HILL’S PROBLEM
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The problem of period multiplying cascade detection in some dynamical system is rather
complicated. The presence of bifurcation chain is not a guarantee that this chain will continue
ad infinitum. The indirect confirmation of infinite period multiplying cascade presence is self
duplication of the period multiplying ”tree” and convergence it’s characteristics to the universal
values.
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Earlier with the help of methods described in [1] the authors have found out and investigated
period doubling bifurcations in the planar circular Hill’s problem. This problem is a particular
case of the well-known in celestial mechanics restricted three body problem which demonstrates
different scenarios of transition from regular to chaotic forms of motion. More over, the invariance
of the Hill’s problem Hamiltonian

H(q1, q2, p1, p2) = 1
2

(
p2

1 + p2
2

)
+ q2p1 − q1p2 − q2

1 + 1
2
q2
2 − 1

r , where r =
√

q2
1 + q2

2,

under canonical transformations

(t, q1, q2, p1, p2) → (−t,−q1, q2, p1,−p2)

(t, q1, q2, p1, p2) → (−t, q1,−q2,−p1, p2)

essentially simplify searching for period multiplying bifurcations (see [1]). For instance, the period
doubling sequence 1−2−4−. . .−512 were built by the authors for the family of periodic orbits g ′ [2]
using the Poincaré section technique [3]. The sequence of the bifurcation values Jacobi constant
is quickly converged to its universal limit δ ≈ 8.721 . . . together with other scaling constants α
and β.

The goal of the present work is study of other period multiplying sequences, e. g. period
tripling and mixed (tripling of doubling and vice verse) as well as numerical determination
their of Feigenbaum and scaling constants. The isoenergetic reduction of the phase flow on the
Poincaré secant plain prevents from the successfully continue the branching out periodic solution
multiplicity more than 2. That is why the authors apply the method of branching and continuation
of second kind periodic solution based on the thorough analysis of generating solution monodromy
matrix [4]. The scaling constants are computed using high precision arithmetic because of
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bifurcating orbit period rapid growth. The pictures below demonstrate the similarity of stability
indices behavior for the orbits of period tripling cascade.

The obtained results allow to state that transition to chaotic form of motion in the Hill’s
problem might happen through the infinite period multiplying cascades.
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STATISTICAL MECHANICS OF VORTEX LINES
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The major task of turbulence theory is to establish the governing equations for slow varying
characteristics of turbulent motion. The current understanding of the dynamics of turbulent flows
is still not sufficient to properly perform this task. However, in one special case, motion of ideal
incompressible fluid in a closed domain, a certain progress has been made. For two-dimensional
motion, the presentation of fluid dynamics as the dynamics of a large number of point vortices
along with the ergodic hypothesis yield the equations for averaged fluid flow. The derivation of
these equations and their solutions have been intensively investigated (see, e.g., a review in [1]).
Much less is known for three-dimensional flows. Here the main results were obtained in [2, 3, 4].
Similarly to the two-dimensional case, the dynamics of fluid is "discretized" by replacing it with
the dynamics of a large number of vortex lines. The major motivation for such discretization is that
it allows one to automatically satisfy to an infinite set of integrals of fluid motion - conservation of
vorticity. Statistical mechanics of fluid motion becomes statistical mechanics of the "particles"
with complex structure: each "particle" is a line. Invoking the ergodic hypothesis, one can
obtain the equations for averaged characteristics of fluid motion. Three-dimensional flows differ
drastically from the two- dimensional ones. A remarkable feature of the three-dimensional flows is
that Schrödingers type equation appears as a part of the system of equations for averaged velocity
field. This feature has a simple origin: As was shown by R. Feynman, Schrödingers equation
appears naturally to describe the result of the summation of some functional of particle trajectories
over all possible particle paths. Computing the phase volume of the phase space of vortex lines, one
faces the problem of summation over all possible positions of vortex lines for the functional which
is similar to that of quantum mechanics. Accordingly, some eigenvalue problem plays a key role in
averaged description of three-dimensional fluid motion. The talk will review the results obtained
in this area and present the recent ones concerning turbulent motion in pipes and channels.
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It is well known that the Hamiltonian dynamics of two point vortices in an ideal fluid in the
standard half-plane H2 = H2

0 := {z = x + iy = (x, y) ∈ R2 : y > 0} located at points z1

and z2 and having nonzero vortex strengths Γ1 and Γ2, respectively , which we represent in the
two-degree-of-freedom form

q̇ =
∂H0

∂p
= {H0, q} , ṗ = −∂H0

∂q
= {H0, p} , (1)

is completely integrable in the Liouville-Arnold sense, because it has two independent, involutive
constants of motion; for example,

H0 and J := Γ1p1 + Γ2p2. (2)

It is natural to ask what are the simplest forms of Hamiltonian perturbations to this system that
produce chaotic - and therefore non-integrable - dynamics. A perturbed form of the system (1)
may be written as

q̇ =
∂ (H0 + H1)

∂p
= {H0 + H1, q} , ṗ = −∂ (H0 + H1)

∂q
= {H0 + H1, p} . (3)

Conditions on the perturbation H1 are described that guarantee that (3) - unlike (1) - has chaotic
solutions. Properties of the perturbation that are sufficient for the existence of chaos - which
in general preclude complete Louisville-Arnold integrabilty - are derived using a Melnikov type
argument. These results are then applied to the problem of finding nonstandard half-planes of the
type

H
2
ϕ :=

{
(x, y) ∈ R

2 : y > ϕ(x) ∀x ∈ R
}

,

where ϕ : R → R is a nonnegative continuous function, on which the two point vortex problem can
exhibit chaotic solutions. Several numerical simulations are presented to illustrate the findings.


